experiment
Experiment
A class to represent an experiment. An experiment is a jsonl file containing a list of prompts to be sent to a language model.
An Experiment is also ran with a set of settings for the pipeline to run the experiment.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
file_name
|
str
|
The name of the jsonl or csv experiment file |
required |
settings
|
Settings
|
Settings for the pipeline which includes the data folder locations, the maximum number of queries to send per minute, the maximum number of attempts when retrying, and whether to run the experiment in parallel |
required |
Source code in src/prompto/experiment.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 | |
evaluate_responses
async
Runs evaluation functions on a prompt dictionary. Note that the list of functions is run in order on the same prompt_dict.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_dict
|
dict
|
Dictionary for the evaluation functions to run on. Note: in the process function, this will be run on self.completed_responses. |
required |
evaluation_funcs
|
list[Callable]
|
List of evaluation functions to run on the completed responses. Each function should take a prompt_dict as input and return a prompt dict as output. The evaluation functions can use keys in the prompt_dict to parameterise the functions. |
required |
Source code in src/prompto/experiment.py
generate_text
async
generate_text(
prompt_dict: dict,
index: int | None,
evaluation_funcs: list[Callable] | None = None,
) -> dict
Generate text by querying an LLM.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_dict
|
dict
|
Dictionary containing the prompt and other parameters to be used for text generation. Required keys are “prompt” and “api”. Some models may have other required keys. |
required |
index
|
int | None
|
The index of the prompt in the experiment, by default None. If None, then index is set to “NA”. Useful for tagging the prompt/response received and any errors |
required |
Returns:
| Type | Description |
|---|---|
dict
|
Completed prompt_dict with “response” key storing the response(s) from the LLM |
Source code in src/prompto/experiment.py
group_prompts
Function to group the experiment prompts by either the “group” key or the “api” key in the prompt dictionaries. The “group” key is used if it exists, otherwise the “api” key is used.
Depending on the ‘max_queries_dict’ attribute in the settings object (of class Settings), the prompts may also be further split by the model name (if a model-specific rate limit is provided).
It first initialises a dictionary with keys as the grouping names determined by the ‘max_queries_dict’ attribute in the settings object, and values are dictionaries with “prompt_dicts” and “rate_limit” keys. It will use any of the rate limits provided to initialise these values. The function then loops over the experiment prompts and adds them to the appropriate group in the dictionary. If a grouping name (given by the “group” or “api” key) is not in the dictionary already, it will initialise it with an empty list of prompt dictionaries and the default rate limit (given by the ‘max_queries’ attribute in the settings).
Returns:
| Type | Description |
|---|---|
dict[str, dict[str, list[dict] | int]
|
Dictionary where the keys are the grouping names (either a group name or an API name, and potentially with a model name tag too) and the values are dictionaries with “prompt_dicts” and “rate_limit” keys. The “prompt_dicts” key stores a list of prompt dictionaries for that group, and the “rate_limit” key stores the maximum number of queries to send per minute for that group |
Source code in src/prompto/experiment.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | |
grouped_experiment_prompts_summary
Generate a dictionary with the group names as keys and the number of queries and rate limit for each group as a string.
Returns:
| Type | Description |
|---|---|
dict[str, str]
|
Dictionary with the group names as keys and the number of queries and rate limit for each group as a string |
Source code in src/prompto/experiment.py
process
async
Function to process the experiment.
The method will first create a folder for the experiment in the output folder named after the experiment name (filename without the .jsonl extension). It will then move the input experiment file to the output folder.
The method will then send the prompts to the API asynchronously and record the responses in an output jsonl file in the output experiment folder. Logs will be printed and saved in the log file for the experiment.
All output files are timestamped with the time for when the experiment started to run.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
evaluation_funcs
|
list[Callable]
|
List of evaluation functions to run on the completed responses. Each function should take a prompt_dict as input and return a prompt dict as output. The evaluation functions can use keys in the prompt_dict to parameterise the functions, by default None. |
None
|
Returns:
| Type | Description |
|---|---|
tuple[dict, float]
|
A tuple containing the completed prompt_dicts from the API and the average processing time per query for the experiment |
Source code in src/prompto/experiment.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | |
query_model_and_record_response
async
query_model_and_record_response(
prompt_dict: dict,
index: int | str | None,
attempt: int,
evaluation_funcs: list[Callable] | None = None,
) -> dict | Exception
Send request to generate response from a LLM and record the response in a jsonl file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_dict
|
dict
|
Dictionary containing the prompt and other parameters to be used for text generation. Required keys are “prompt” and “api”. Optionally can have a “parameters” key. Some APIs may have other specific required keys |
required |
index
|
int | None
|
The index of the prompt in the experiment, by default None. If None, then index is set to “NA”. Useful for tagging the prompt/response received and any errors |
required |
attempt
|
int
|
The attempt number to process the prompt |
required |
Returns:
| Type | Description |
|---|---|
dict | Exception
|
Completed prompt_dict with “response” key storing the response(s) from the LLM. A dictionary is returned if the response is received successfully or if the maximum number of attempts is reached (i.e. an Exception was caught but we have attempt==max_attempts). An Exception is returned (not raised) if an error is caught and we have attempt < max_attempts, indicating that we could try this prompt again later in the queue. |
Source code in src/prompto/experiment.py
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 | |
save_completed_responses_to_csv
Save the completed responses to a csv file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
str | None
|
The name of the csv file to save the completed responses to. If None, the filename will be the experiment name with the timestamp of when the experiment started to run, by default None |
None
|
Source code in src/prompto/experiment.py
send_requests
async
send_requests(
prompt_dicts: list[dict],
attempt: int,
rate_limit: int,
group: str | None = None,
evaluation_funcs: list[Callable] | None = None,
) -> tuple[list[dict], list[dict | Exception]]
Send requests to the API asynchronously.
The method will send the prompts to the API asynchronously with a wait interval between requests in order to not exceed the maximum number of queries per minute specified by the experiment settings.
For each prompt_dict in prompt_dicts, the method will query the model and record the response in a jsonl file if successful. If the query fails, an Exception is returned.
A tuple is returned containing the input prompt_dicts and their corresponding completed prompt_dicts with the responses from the API. For any failed queries, the response will be an Exception.
This tuple can be used to determine easily which prompts failed and potentially need to be retried.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_dicts
|
list[dict]
|
List of dictionaries containing the prompt and other parameters to be sent to the API. Each dictionary must have keys “prompt” and “api”. Optionally, they can have a “parameters” key. Some APIs may have other specific required keys |
required |
attempt
|
int
|
The attempt number to process the prompt |
required |
rate_limit
|
int
|
The maximum number of queries to send per minute |
required |
group
|
str | None
|
Group name, by default None. If None, then the group is not specified in the logs |
None
|
Returns:
| Type | Description |
|---|---|
tuple[list[dict], list[dict | Exception]]
|
A tuple containing the input prompt_dicts and their corresponding responses (given in the form of completed prompt_dicts, i.e. a prompt_dict with a completed “response” key) from the API. For any failed queries, the response will be an Exception. |
Source code in src/prompto/experiment.py
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 | |
send_requests_retry
async
send_requests_retry(
prompt_dicts: list[dict],
rate_limit: int,
group: str | None = None,
evaluation_funcs: list[Callable] | None = None,
) -> None
Send requests to the API asynchronously and retry failed queries up to a maximum number of attempts.
Wrapper function around send_requests that retries failed queries for a maximum number of attempts specified by the experiment settings or until all queries are successful.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_dicts
|
list[dict]
|
List of dictionaries containing the prompt and other parameters to be sent to the API. Each dictionary must have keys “prompt” and “api”. Optionally, they can have a “parameters” key. Some APIs may have other specific required keys |
required |
group
|
str | None
|
Group name, by default None. If None, then the group is not specified in the logs |
None
|