
Research Software Engineering with Python

Contents
Git & GitHub

Python

Text Editor

Course Contents in Jupyter

Introduction
In this course, you will move beyond programming, to learn how to construct reliable, readable, efficient research

software in a collaborative environment. The emphasis is on practical techniques, tips, and technologies to

effectively build and maintain complex code. This is a relatively short course (8-10 half-day modules) which is

intensive and involves hands-on exercises.

Pre-requisites
It would be extremely helpful to have experience in at least one programming language (for example C++, C,

Fortran, Python, Ruby, Matlab or R) but this is not a strict requirement.

Experience with version control and/or the Unix shell, for instance from Software Carpentry, would also be

helpful.

You should bring your own computer to the course as there are several hands-on exercise for you to work

through.

We have provided setup instructions for installing the software needed for the course on your computer.

Eligibility
The course is open to postgraduate students, early career researchers, practitioners (e.g. data

analysts/scientists) and researchers interested in to learn how to construct reliable, readable, efficient research

software in a collaborative environment. Turing PhD students and researchers are particularly encouraged to apply.

Attendance is free.

Instructors
Turing Research Engineering Group

Exercises
Examples and exercises for this course will be provided in Python. Python syntax and usage will be introduced during

this course but please be aware that this course is not intended to teach Python.

Solutions

Note: you are not graded.

Sample solutions to the exercises are available here.

Versions
You can browse through course notes as HTML, download them as a printable PDF via the navigation bar to the left,

or clone the repo and run the notebooks (see the setup instructions).

Support and Contributing
If you encounter any problem or bug in these materials, please remember to add an issue to the course repo,

explaining the problem and, potentially, its solution. By doing this, you will improve the instructions for future

users. :tada:

We also welcome suggestions and contributions for adding to or improving the material.

Installation Instructions

Introduction

This document contains instructions for installation of the packages we’ll be using during the course. You will be

following the training on your own computer, so please complete these instructions. The instructions include

Windows, Mac and Linux specific sections.

Note for Mac users

If you encounter any problem during insallation and you manage to solve them (feel free to ask us for help), it

would be greatly helpful if you’d add an issue to the course repo, explaining the problem and solution (Note:

you’ll require a GitHub account for this). By doing this you will be helping to improve the instructions for future

users! :tada:

https://swcarpentry.github.io/git-novice/
https://swcarpentry.github.io/shell-novice/
https://www.turing.ac.uk/research/research-engineering
https://github.com/alan-turing-institute/rse-course
https://github.com/alan-turing-institute/rsd-engineeringcourse

What we’re installing

the Python programming language (version 3.8 or greater) and Conda

a selection of Python software packages that will be used during the course (via a Conda environment)

git for the version control module

a suitable text editor

Please ensure that you have a computer (ideally a laptop) with all of these installed. Even if you think you have

all of these things already, it’s worth reading through the prerequisite pages to make sure.

Unfamiliar with the command line?

Familiarity with the command line isn’t a prerequisite for the course, but you may need to make use of it at some

points. Some of the install steps require you to enter commands in a prompt (terminal or console window) on your

computer.

If you’re working on a Mac or Linux computer, simply open the Terminal app when you arrive at these steps. If you’re

on a Windows PC, we recommend installing the Git Bash terminal which is covered in the next step.

Git & GitHub

Check whether you have installed already.

If not, follow the instructions for your OS and try running this commnd again. If your version of git is more than

18 months old (see releases), please update it.

Windows instructions:

Install the GitHub Desktop Client. This comes with both a GUI client as well as the Git Bash terminal client which

we will use during the course. In some instances Git Bash may need to be installed separately. In order to use conda

with Git Bash follow the instructions here

You will need to create an account on GitHub. You can then sign-in to the GitHub Desktop Client which should

automatically set-up SSH based authentication for the terminal client.

Configure the default terminal client (there are three different flavours of terminal on Windows: Windows CMD (DOS

like), Windows Powershell, and BASH) to use BASH, as this most closely resembles the Linux and macOS terminal used by

other students:

1. In the Desktop Client, select Tools

2. Then Options

3. Default Shell

4. Git Bash

You’ll know it has worked when you can open a Git Bash terminal; the window should have a title that starts with

MINGW32 (scroll to the top of this page for how to check the git version).

macOS and Linux instructions:

Installing Git on macOS

Installing Git on Linux

To use git you will need to set up an account with your email address and name. To do this you can follow the Your

Identity section of first time git setup.

You can check that they have been set correctly by running git config user.name and git config user.email. For the git

module (Version Control with Git), you will also require access to GitHub.

Follow these instructions if you are working on macOS or Linux:

1. Sign up, if you haven’t already

2. Generate an SSH key pair

3. Add the public key to your GitHub account and the private key to your computer’s keychain

4. Lastly, you should test your SSH connection

Python

Download Anaconda for your OS. Then follow the instructions for installation, which differ for Windows, macOS and

Linux.

You should test whether the installation has worked as expected by doing the following:

Open a terminal (console) window and run the following:

Note: Anaconda should have installed the most recent version by default but note that you will require version 3.8

or greater of Python for the course.

Text Editor
Unless you already use a specific editor which you are comfortable with we recommend using one of the following:

Visual Studio Code

Notepad++

Emacs

PyCharm

Windows editor tips and final checks

macOS editor tips and final checks

Linux editor tips and final checks

git --version

python --version

https://en.wikipedia.org/wiki/Git#Releases
http://windows.github.com/
https://gitforwindows.org/
https://discuss.codecademy.com/t/setting-up-conda-in-git-bash/534473
https://help.github.com/articles/generating-ssh-keys#platform-windows
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://github.com/join
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/testing-your-ssh-connection
https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/install/
https://code.visualstudio.com/
https://notepad-plus-plus.org/downloads/
https://www.gnu.org/software/emacs/
https://www.jetbrains.com/pycharm/

Course Contents in Jupyter

After following the installation instructions for your operating system, you should now have the following:

1. A git installation, linked to your GitHub account

2. A working installation of the Python (3) programming language

3. The ability to install Python packages via Conda

Throughout the course, we will be working in Python, and one of the best ways to get started with this language is

Jupyter Lab.

In addition to viewing the course materials online at this site (https://alan-turing-institute.github.io/rse-

course), we recommend cloning (downloading) the GitHub repository containing the course contents. This allows you

to open the contents interactively via Jupyter on your computer.

Navigate to a suitable location in a terminal window and clone the course repository (if you haven’t used

Git/GitHub before, it can be useful to create a folder to store repositories with mkdir):

The course contents should take a few moments to download. Once the download has finished, you should enter the

cloned course repository, set up a conda Python environment containing the packages we’ll make use of during the

course (including Jupyter) and then launch Jupyter Lab. To do this, we’ll make use of conda’s environment.yml file,

which is configured in this case to create an environment named rse-course:

This should automatically open a window in your default web browser (if not, go to http://localhost:8890/lab).

You should be able to see a layout that looks something like the below. Double clicking on the folders, then the

.ipynb files within will allow you to view the course materials interactively, giving you the option to edit code

cells and experiment as you learn.

C++ compiler for Windows

If you’re using Windows, in order to use Cython in the “Programming for Speed” module, you may need to install a C++

compiler. Open a terminal window (e.g. in Git Bash that you installed earlier) and activate the conda Python

environment you just set up:

Then see here for details on how to install the C++ compiler.

Jupyter issues on Windows (Sophos):

To use the Jupyter Lab on a Windows computer with Sophos anti-virus installed it may be necessary to open additional

ports allowing communication between the notebook and its server. The solution is:

open your Sophos Endpoint Security and Control Panel from your tray or start menu

select Configure > Anti-virus > Authorization from the menu at the top

select the websites tab

click the Add button and add 127.0.0.1 and localhost to the Authorized websites list

restart computer (or just restart the Jupyter)

1. Introduction to Python
Why use scripting languages?

Python and the Jupyter notebook

Variables, using functions, and types

Loops and control

Data structures: lists, dictionaries, and sets.

mkdir ~/github_repos
cd ~/github_repos
git clone --depth 1 https://github.com/alan-turing-institute/rse-course

cd rse-course
conda env create -f environment.yml
conda activate rse-course
jupyter lab

conda activate rse-course

https://alan-turing-institute.github.io/rse-course
http://localhost:8890/lab
https://github.com/cython/cython/wiki/CythonExtensionsOnWindows
http://stackoverflow.com/questions/13036197/ipython-notebook-getting-output

Contents

1.0 Introduction to Python (10 minutes)

1.1 Variables (20 minutes)

1.2 Functions (20 minutes)

1.3 Types (20 minutes)

1.4 Containers (10 minutes)

1.5 Dictionaries (10 minutes)

1.6 Data Structures (5 minutes)

1.7 Control and Flow (15 minutes)

1.8 Iteration (10 minutes)

Total time: 2 hrs

Exercises

Classroom exercises are grouped together at the end of the module: 1.9 Classroom Exercises. Each exercise is

labelled with any sections whose contents are relevant. We recommend that instructors schedule the exercises to be

done in groups during breaks in the taught content. However, it is important that participants also have some time

away from their screens. Exercises can also be left as self-paced homework assignments if preferred.

1.0 Introduction to Python
Estimated time for this notebook: 10 minutes

1.0.1 Why write programs for research?

Programs are a rigorous way of describing data analysis for other researchers, as well as for computers.

Not just labour saving

Scripted research can be tested and reproduced

Sensible Input - Reasonable Output

Computational research suffers from people assuming each other’s data manipulation is correct. By sharing code,

which is much more easy for a non-author to understand than a spreadsheet, we can avoid the “SIRO” problem. The old

saw “Garbage in Garbage out” is not the real problem for science:

Sensible input

Reasonable output

Why write software to manage your data and plots?

We can use programs for our entire research pipeline. Not just big scientific simulation codes, but also the small

scripts which we use to tidy up data and produce plots. This should be code, so that the whole research pipeline is

recorded for reproducibility. Data manipulation in spreadsheets is much harder to share or check. There are many

data analysis examples out there, like the on the software carpentry site.

1.0.2 Why Python?

Why teach Python?

In this first session, we will introduce Python.

This course is about programming for data analysis and visualisation in research.

It’s not mainly about Python.

But we have to use some language.

Why Python?

Python is quick to program in

Python is popular in research, and has lots of libraries for science

Python interfaces well with faster languages

Python is free, so you’ll never have a problem getting hold of it, wherever you go.

1.0.3 Many kinds of Python

The Jupyter Notebook

The easiest way to get started using Python, and one that is commonly used for exploratory research, is the Jupyter

Notebook.

In the notebook, you can easily mix code with discussion and commentary. You can also mix code with the results of

that code, such as graphs and other data visualisations.

Make plot
%matplotlib inline
import math

import matplotlib.pyplot as plt
import numpy as np

theta = np.arange(0, 4 * math.pi, 0.1)
eight = plt.figure()
axes = eight.add_axes([0, 0, 1, 1])
axes.plot(0.5 * np.sin(theta), np.cos(theta / 2))

https://swcarpentry.github.io/python-novice-inflammation/01-intro/index.html
http://www.python.org/

We’re going to be mainly working in the Jupyter notebook in this course. To get hold of a copy of the notebook,

follow the setup instructions shown on the course website.

Jupyter notebooks consist of discussion cells, referred to as “markdown cells”, and “code cells”, which contain

Python. This document has been created using Jupyter notebook, and this very cell is a Markdown Cell.

Code cell inputs are numbered, and show the output below.

Markdown cells contain text which uses a simple format to achive pretty layout, for example, to obtain:

bold, italic

Bullet

Quote

We write:

See the Markdown documentation at This Hyperlink

Typing code in the notebook

When working with the notebook, you can either be in a cell, typing its contents, or outside cells, moving around

the notebook.

When in a cell, press escape to leave it. When moving around outside cells, press return to enter.

Outside a cell:

Use arrow keys to move around.

Press b to add a new cell below the cursor.

Press m to turn a cell from code mode to markdown mode.

Press shift+enter to calculate the code in the block.

Press h to see a list of useful keys in the notebook.

Inside a cell:

Press tab to suggest completions of variables. (Try it!)

Supplementary material: Learn more about Jupyter notebooks.

Python at the command line

More experience Python users tend to prefer working in a “command line environment”. You can find out more about

this by attending a “Software Carpentry” or similar workshop, which introduce the skills needed for computationally

based research.

Python scripts

When your code gets more complicated, you’ll want to be able to write your own full programs in Python, which can

be run just like any other program on your computer. Here are some examples:

[<matplotlib.lines.Line2D at 0x7f119d3c5df0>]

print("This cell is a code cell")

This cell is a code cell

bold, *italic*

* Bullet

> Quote

%%bash
Above line tells Python to execute this cell as *shell code*
not Python, as if we were in a command line
This is called a 'cell magic'

python -c "print(2 * 4)"

8

%%bash
echo "print(2 * 4)" > eight.py
python eight.py

https://alan-turing-institute.github.io/rse-course/html/course_prerequisites/index.html
http://daringfireball.net/projects/markdown/
https://jupyter.org/
https://software-carpentry.org/

We can make the script directly executable (on Linux or Mac) by inserting a shebang and setting the permissions to

execute.

Python Libraries

We can write our own python libraries, called modules which we can import into the notebook and invoke:

In a real example, we could edit the file on disk using a program such as Atom or VS code.

There is a huge variety of available packages to do pretty much anything. For instance, try import antigravity.

The %% at the beginning of a cell is called magics. There’s a large list of them available and you can create your

own.

1.1 Variables

Estimated time for this notebook: 10 minutes

1.1.1 Variable Assignment

When we generate a result, the answer is displayed, but not kept anywhere.

If we want to get back to that result, we have to store it. We put it in a box, with a name on the box. This is a

variable.

If we look for a variable that hasn’t ever been defined, we get an error.

8

%%writefile fourteen.py
#! /usr/bin/env python
print(2 * 7)

Overwriting fourteen.py

%%bash
chmod u+x fourteen.py
./fourteen.py

14

%%writefile draw_eight.py
Above line tells the notebook to treat the rest of this
cell as content for a file on disk.
import math
import numpy as np
import matplotlib.pyplot as plt

def make_figure():
 theta = np.arange(0, 4 * math.pi, 0.1)
 eight = plt.figure()
 axes = eight.add_axes([0, 0, 1, 1])
 axes.plot(0.5 * np.sin(theta), np.cos(theta / 2))
 return eight

Overwriting draw_eight.py

import draw_eight # Load the library file we just wrote to disk

image = draw_eight.make_figure()

2 * 3

6

six = 2 * 3

print(six)

6

https://en.wikipedia.org/wiki/Shebang_%28Unix%29
http://v4.software-carpentry.org/shell/perm.html
https://atom.io/
https://code.visualstudio.com/
https://ipython.readthedocs.io/en/stable/interactive/magics.html
http://ipython.readthedocs.io/en/stable/config/custommagics.html

That’s not the same as an empty box, well labeled:

(None is the special python value for a no-value variable.)

Supplementary Materials: There’s more on variables at http://swcarpentry.github.io/python-novice-inflammation/01-

numpy/index.html

Anywhere we could put a raw number, we can put a variable label, and that works fine:

1.1.2 Reassignment and multiple labels

But here’s the real scary thing: it seems like we can put something else in that box:

Note that the data that was there before has been lost.

No labels refer to it any more - so it has been “Garbage Collected”! We might imagine something pulled out of the

box, and thrown on the floor, to make way for the next occupant.

In fact, though, it is the label that has moved. We can see this because we have more than one label refering to

the same box:

And we can move just one of those labels:

So we can now develop a better understanding of our labels and boxes: each box is a piece of space (an address) in

computer memory. Each label (variable) is a reference to such a place.

When the number of labels on a box (“variables referencing an address”) gets down to zero, then the data in the box

cannot be found any more.

print(seven)

NameError Traceback (most recent call last)
Cell In[4], line 1
----> 1 print(seven)

NameError: name 'seven' is not defined

nothing = None

print(nothing)

None

type(None)

NoneType

print(5 * six)

30

scary = six * six * six

print(scary)

216

scary = 25

print(scary)

25

name = "James"

nom = name

print(nom)

James

print(name)

James

nom = "Hetherington"

print(name)

James

print(nom)

Hetherington

http://swcarpentry.github.io/python-novice-inflammation/01-numpy/index.html

After a while, the language’s “Garbage collector” will wander by, notice a box with no labels, and throw the data

away, making that box available for more data.

Old fashioned languages like C and Fortran don’t have Garbage collectors. So a memory address with no references to

it still takes up memory, and the computer can more easily run out.

So when I write:

The following things happen:

1. A new text object is created, and an address in memory is found for it.

2. The variable “name” is moved to refer to that address.

3. The old address, containing “James”, now has no labels.

4. The garbage collector frees the memory at the old address.

Supplementary materials: There’s an online python tutor which is great for visualising memory and references. Try

the scenario we just looked at

Labels are contained in groups called “frames”: our frame contains two labels, ‘nom’ and ‘name’.

1.1.3 Objects and types

An object, like name, has a type. In the online python tutor example, we see that the objects have type “str”. str

means a text object: Programmers call these ‘strings’.

Depending on its type, an object can have different properties: data fields Inside the object.

Consider a Python complex number for example:

We can see what properties and methods an object has available using the dir function:

You can see that there are several methods whose name starts and ends with __ (e.g. __init__): these are special

methods that Python uses internally, and we will discuss some of them later on in this course. The others (in this

case, conjugate, img and real) are the methods and fields through which we can interact with this object.

name = "Jim"

type(name)

str

z = 3 + 1j

dir(z)

['__abs__',
 '__add__',
 '__bool__',
 '__class__',
 '__delattr__',
 '__dir__',
 '__divmod__',
 '__doc__',
 '__eq__',
 '__float__',
 '__floordiv__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__getnewargs__',
 '__gt__',
 '__hash__',
 '__init__',
 '__init_subclass__',
 '__int__',
 '__le__',
 '__lt__',
 '__mod__',
 '__mul__',
 '__ne__',
 '__neg__',
 '__new__',
 '__pos__',
 '__pow__',
 '__radd__',
 '__rdivmod__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__rfloordiv__',
 '__rmod__',
 '__rmul__',
 '__rpow__',
 '__rsub__',
 '__rtruediv__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__sub__',
 '__subclasshook__',
 '__truediv__',
 'conjugate',
 'imag',
 'real']

type(z)

complex

z.real

3.0

z.imag

http://www.pythontutor.com/visualize.html#code=name+%3D+%22James%22%0Anom+%3D+name%0Aprint+nom%0Aprint+name%0Anom+%3D+%22Hetherington%22%0Aprint+nom%0Aprint+name%0Aname%3D+%22Jim%22%0Aprint+nom%0Aprint+name&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=true&textReferences=false&py=2&rawInputLstJSON=%5B%5D&curInstr=0

A property of an object is accessed with a dot.

The jargon is that the “dot operator” is used to obtain a property of an object.

When we try to access a property that doesn’t exist, we get an error:

1.1.4 Reading error messages.

It’s important, when learning to program, to develop an ability to read an error message and find, from in amongst

all the confusing noise, the bit of the error message which tells you what to change!

We don’t yet know what is meant by AttributeError, or “Traceback”.

But in the above, we can see that the error happens on the third line of our code cell.

We can also see that the error message:

‘complex’ object has no attribute ‘wrong’

…tells us something important. Even if we don’t understand the rest, this is useful for debugging!

1.1.5 Variables and the notebook kernel

When I type code in the notebook, the objects live in memory between cells.

If I change a variable:

It keeps its new value for the next cell.

But cells are not always evaluated in order.

If I now go back to input cell reading number = number + 1, and run it again, with shift-enter. Number will change

from 2 to 2, then from 2 to 3, then from 3 to 4… Try it!

So it’s important to remember that if you move your cursor around in the notebook, it doesn’t always run top to

bottom.

Supplementary material: (1) https://jupyter-notebook.readthedocs.io/en/latest/

1.1.6 Comments

Code after a # symbol doesn’t get run.

1.2 Using Functions

Estimated time for this notebook: 20 minutes

1.2.1 Calling functions

We often want to do things to our objects that are more complicated than just assigning them to variables.

1.0

z.wrong

AttributeError Traceback (most recent call last)
Cell In[27], line 1
----> 1 z.wrong

AttributeError: 'complex' object has no attribute 'wrong'

z2 = 5 - 6j
print("Gets to here")
print(z.wrong)
print("Didn't get to here")

Gets to here

AttributeError Traceback (most recent call last)
Cell In[28], line 3
 1 z2 = 5 - 6j
 2 print("Gets to here")
----> 3 print(z.wrong)
 4 print("Didn't get to here")

AttributeError: 'complex' object has no attribute 'wrong'

number = 0

print(number)

0

number = number + 1

print(number)

1

print("This runs") # print("This doesn't")
print("This doesn't either")

This runs

https://jupyter-notebook.readthedocs.io/en/latest/

Here we have “called a function”.

The function len takes one input, and has one output. The output is the length of whatever the input was.

Programmers also call function inputs “parameters” or, confusingly, “arguments”.

Here’s another example:

Which gives us back a list of the letters in Python, sorted alphabetically (more specifically, according to their

Unicode order).

The input goes in brackets after the function name, and the output emerges wherever the function is used.

So we can put a function call anywhere we could put a “literal” object or a variable.

1.2.2 Using methods

Objects come associated with a bunch of functions designed for working on objects of that type. We access these

with a dot, just as we do for data attributes:

These are called methods. If you try to use a method defined for a different type, you get an error:

If you try to use a method that doesn’t exist, you get an error:

Methods and properties are both kinds of attribute, so both are accessed with the dot operator.

Objects can have both properties and methods:

len("pneumonoultramicroscopicsilicovolcanoconiosis")

45

sorted("Python")

['P', 'h', 'n', 'o', 't', 'y']

len("Jim") * 8

24

x = len("Mike")
y = len("Bob")
z = x + y

print(z)

7

"shout".upper()

'SHOUT'

x = 5

type(x)

int

x.upper()

AttributeError Traceback (most recent call last)
Cell In[9], line 1
----> 1 x.upper()

AttributeError: 'int' object has no attribute 'upper'

x.wrong

AttributeError Traceback (most recent call last)
Cell In[10], line 1
----> 1 x.wrong

AttributeError: 'int' object has no attribute 'wrong'

z = 1 + 5j

z.real

1.0

z.conjugate()

(1-5j)

z.conjugate

<function complex.conjugate>

https://www.ssec.wisc.edu/~tomw/java/unicode.html#x0000

1.2.3 Functions are just a type of object!

Now for something that will take a while to understand: don’t worry if you don’t get this yet, we’ll look again at

this in much more depth later in the course.

If we forget the (), we realise that a method is just a property which is a function!

Functions are just a kind of variable, and we can assign new labels to them:

1.2.4 Getting help on functions and methods

The ‘help’ function, when applied to a function, gives help on it!

The ‘dir’ function, when applied to an object, lists all its attributes (properties and methods):

z.conjugate

<function complex.conjugate>

type(z.conjugate)

builtin_function_or_method

somefunc = z.conjugate

somefunc()

(1-5j)

sorted([1, 5, 3, 4])

[1, 3, 4, 5]

magic = sorted

type(magic)

builtin_function_or_method

magic(["Technology", "Advanced"])

['Advanced', 'Technology']

help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, key=None, reverse=False)
 Return a new list containing all items from the iterable in ascending order.

 A custom key function can be supplied to customize the sort order, and the
 reverse flag can be set to request the result in descending order.

dir("Hexxo")

Most of these are confusing methods beginning and ending with __, part of the internals of python.

Again, just as with error messages, we have to learn to read past the bits that are confusing, to the bit we want:

1.2.5 Operators

Now that we know that functions are a way of taking a number of inputs and producing an output, we should look

again at what happens when we write:

This is just a pretty way of calling an “add” function. Things would be more symmetrical if add were actually

written

['__add__',
 '__class__',
 '__contains__',
 '__delattr__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__getitem__',
 '__getnewargs__',
 '__gt__',
 '__hash__',
 '__init__',
 '__init_subclass__',
 '__iter__',
 '__le__',
 '__len__',
 '__lt__',
 '__mod__',
 '__mul__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__rmod__',
 '__rmul__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 'capitalize',
 'casefold',
 'center',
 'count',
 'encode',
 'endswith',
 'expandtabs',
 'find',
 'format',
 'format_map',
 'index',
 'isalnum',
 'isalpha',
 'isascii',
 'isdecimal',
 'isdigit',
 'isidentifier',
 'islower',
 'isnumeric',
 'isprintable',
 'isspace',
 'istitle',
 'isupper',
 'join',
 'ljust',
 'lower',
 'lstrip',
 'maketrans',
 'partition',
 'replace',
 'rfind',
 'rindex',
 'rjust',
 'rpartition',
 'rsplit',
 'rstrip',
 'split',
 'splitlines',
 'startswith',
 'strip',
 'swapcase',
 'title',
 'translate',
 'upper',
 'zfill']

"Hexxo".replace("x", "l")

'Hello'

help("FIsh".replace)

Help on built-in function replace:

replace(old, new, count=-1, /) method of builtins.str instance
 Return a copy with all occurrences of substring old replaced by new.

 count
 Maximum number of occurrences to replace.
 -1 (the default value) means replace all occurrences.

 If the optional argument count is given, only the first count occurrences are
 replaced.

x = 2 + 3

print(x)

5

Where ‘+’ is just the name of the name of the adding function.

In python, these functions do exist, but they’re actually methods of the first input: they’re the mysterious __

functions we saw earlier (Two underscores.)

We call these symbols, +, - etc, “operators”.

The meaning of an operator varies for different types:

Sometimes we get an error when a type doesn’t have an operator:

The word “operand” means “thing that an operator operates on”!

Or when two types can’t work together with an operator:

To do this, put:

Just as in Mathematics, operators have a built-in precedence, with brackets used to force an order of operations:

Supplementary material: https://docs.python.org/3/reference/expressions.html#operator-precedence

1.3 Types
Estimated time for this notebook: 20 minutes

We have seen that Python objects have a ‘type’:

1.3.1 Floats and integers

Python has two core numeric types, int for integer, and float for real number.

Zero after a point is optional. But the Dot makes it a float.

x = +(2, 3)

x.__add__(7)

12

"Hello" + "Goodbye"

'HelloGoodbye'

[2, 3, 4] + [5, 6]

[2, 3, 4, 5, 6]

7 - 2

5

[2, 3, 4] - [5, 6]

TypeError Traceback (most recent call last)
Cell In[33], line 1
----> 1 [2, 3, 4] - [5, 6]

TypeError: unsupported operand type(s) for -: 'list' and 'list'

[2, 3, 4] + 5

TypeError Traceback (most recent call last)
Cell In[34], line 1
----> 1 [2, 3, 4] + 5

TypeError: can only concatenate list (not "int") to list

[2, 3, 4] + [5]

[2, 3, 4, 5]

print(2 + 3 * 4)

14

print((2 + 3) * 4)

20

type(5)

int

one = 1
ten = 10
one_float = 1.0
ten_float = 10.0

https://docs.python.org/3/reference/expressions.html#operator-precedence

The meaning of an operator varies depending on the type it is applied to!

The divided by operator when applied to floats, and integers means divide by for real numbers.

The // operator means divide and then round down

There is a function for every type name, which is used to convert the input to an output of the desired type.

I lied when I said that the float type was a real number. It’s actually a computer representation of a real number

called a “floating point number”. Representing or perfectly would be impossible in a computer, so we use a

finite amount of memory to do it.

Supplementary material:

https://docs.python.org/3/tutorial/floatingpoint.html

http://floating-point-gui.de/formats/fp/

Advanced: http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

1.3.2 Strings

Python has a built in string type, supporting many useful methods.

So + for strings means “join them together” - concatenate.

tenth = one_float / ten_float

tenth

0.1

type(one)

int

type(one_float)

float

print(one // ten)

0

one_float / ten_float

0.1

print(type(one / ten))

<class 'float'>

type(tenth)

float

10 // 3

3

10.0 / 3

3.3333333333333335

10 / 3.0

3.3333333333333335

x = float(5)
type(x)

float

10 / float(3)

3.3333333333333335

√2 1
3

N = 10000.0
sum([1 / N] * int(N))

0.9999999999999062

given = "James"
family = "Hetherington"
full = given + " " + family

print(full.upper())

https://docs.python.org/3/tutorial/floatingpoint.html
http://floating-point-gui.de/formats/fp/
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

As for float and int, the name of a type can be used as a function to convert between types:

We can remove extraneous material from the start and end of a string:

Note that you can write strings in Python using either single (' ... ') or double (" ... ") quote marks. The two ways

are equivalent. However, if your string includes a single quote (e.g. an apostrophe), you should use double quotes

to surround it:

And vice versa: if your string has a double quote inside it, you should wrap the whole string in single quotes.

1.3.3 Lists

Python’s basic container type is the list.

We can define our own list with square brackets:

Lists do not have to contain just one type:

We access an element of a list with an int in square brackets:

Note that list indices start from zero.

We can use a string to join together a list of strings:

And we can split up a string into a list:

And combine these:

JAMES HETHERINGTON

ten, one

(10, 1)

print(ten + one)

11

print(float(str(ten) + str(one)))

101.0

" Hello ".strip()

'Hello'

"James's Class"

"James's Class"

'"Wow!", said Bob.'

'"Wow!", said Bob.'

[1, 3, 7]

[1, 3, 7]

type([1, 3, 7])

list

various_things = [1, 2, "banana", 3.4, [1, 2]]

various_things[2]

'banana'

index = 0
various_things[index]

1

name = ["James", "Philip", "John", "Hetherington"]
print("==".join(name))

James==Philip==John==Hetherington

"Ernst Stavro Blofeld".split(" ")

['Ernst', 'Stavro', 'Blofeld']

"Ernst Stavro Blofeld".split("o")

['Ernst Stavr', ' Bl', 'feld']

A matrix can be represented by nesting lists – putting lists inside other lists.

… but later we will learn about a better way of representing matrices.

1.3.4 Ranges

Another useful type is range, which gives you a sequence of consecutive numbers. In contrast to a list, ranges

generate the numbers as you need them, rather than all at once.

If you try to print a range, you’ll see something that looks a little strange:

We don’t see the contents, because they haven’t been generatead yet. Instead, Python gives us a description of the

object - in this case, its type (range) and its lower and upper limits.

We can quickly make a list with numbers counted up by converting this range:

Ranges in Python can be customised in other ways, such as by specifying the lower limit or the step (that is, the

difference between successive elements). You can find more information about them in the official Python

documentation.

1.3.5 Sequences

Many other things can be treated like lists. Python calls things that can be treated like lists sequences.

A string is one such sequence type.

Sequences support various useful operations, including:

Accessing a single element at a particular index: sequence[index]

Accessing multiple elements (a slice): sequence[start:end_plus_one]

Getting the length of a sequence: len(sequence)

Checking whether the sequence contains an element: element in sequence

The following examples illustrate these operations with lists, strings and ranges.

"->".join("John Ronald Reuel Tolkien".split(" "))

'John->Ronald->Reuel->Tolkien'

identity = [[1, 0], [0, 1]]

identity[0][0]

1

range(5)

range(0, 5)

count_to_five = range(5)
print(list(count_to_five))

[0, 1, 2, 3, 4]

print(count_to_five[1])

1

print("James"[2])

m

count_to_five = range(5)

count_to_five[1:3]

range(1, 3)

"Hello World"[4:8]

'o Wo'

len(various_things)

5

len("Python")

6

name

['James', 'Philip', 'John', 'Hetherington']

"John" in name

https://docs.python.org/3/library/stdtypes.html#ranges

1.3.6 Unpacking

Multiple values can be unpacked when assigning from sequences, like dealing out decks of cards.

If there is too much or too little data, an error results:

Python provides some handy syntax to split a sequence into its first element (“head”) and the remaining ones (its

“tail”):

Note the syntax with the *. The same pattern can be used, for example, to extract the middle segment of a sequence

whose length we might not know:

1.4 Containers

Estimated time for this notebook: 10 minutes

1.4.1 Checking for containment.

The list we saw is a container type: its purpose is to hold other objects. We can ask python whether or not a

container contains a particular item:

True

3 in count_to_five

True

mylist = ["Hello", "World"]
a, b = mylist
print(b)

World

range(4)

range(0, 4)

zero, one, two, three = range(4)

two

2

zero, one, two, three = range(7)

ValueError Traceback (most recent call last)
Cell In[52], line 1
----> 1 zero, one, two, three = range(7)

ValueError: too many values to unpack (expected 4)

zero, one, two, three = range(2)

ValueError Traceback (most recent call last)
Cell In[53], line 1
----> 1 zero, one, two, three = range(2)

ValueError: not enough values to unpack (expected 4, got 2)

head, *tail = range(4)
print("head is", head)
print("tail is", tail)

head is 0
tail is [1, 2, 3]

one, *two, three = range(10)

print("one is", one)
print("two is", two)
print("three is", three)

one is 0
two is [1, 2, 3, 4, 5, 6, 7, 8]
three is 9

"Dog" in ["Cat", "Dog", "Horse"]

True

"Bird" in ["Cat", "Dog", "Horse"]

False

2 in range(5)

True

1.4.2 Mutability

A list can be modified: (is mutable)

1.4.3 Tuples

A tuple is an immutable sequence. It is like a list, except it cannot be changed. It is defined with round

brackets.

str is immutable too:

But note that container reassignment is moving a label, not changing an element:

Supplementary material: Try the online memory visualiser for this one.

1.4.4 Memory and containers

The way memory works with containers can be important:

99 in range(5)

False

name = "James Philip John Hetherington".split(" ")
print(name)

['James', 'Philip', 'John', 'Hetherington']

name[0] = "Dr"
name[1:3] = ["Griffiths-"]
name.append("PhD")

print(" ".join(name))

Dr Griffiths- Hetherington PhD

x = (0,)
type(x)

tuple

my_tuple = ("Hello", "World")
my_tuple[0] = "Goodbye"

TypeError Traceback (most recent call last)
Cell In[8], line 2
 1 my_tuple = ("Hello", "World")
----> 2 my_tuple[0] = "Goodbye"

TypeError: 'tuple' object does not support item assignment

type(my_tuple)

tuple

fish = "Hake"
fish[0] = "R"

TypeError Traceback (most recent call last)
Cell In[10], line 2
 1 fish = "Hake"
----> 2 fish[0] = "R"

TypeError: 'str' object does not support item assignment

fish = "Rake" # OK!

x = list(range(3))
x

[0, 1, 2]

y = x
y

[0, 1, 2]

z = x[0:3]
y[1] = "Gotcha!"

x

[0, 'Gotcha!', 2]

y

[0, 'Gotcha!', 2]

z

http://www.pythontutor.com/visualize.html#code=name+%3D++%22James+Philip+John+Hetherington%22.split%28%22+%22%29%0A%0Aname%5B0%5D+%3D+%22Dr%22%0Aname%5B1%3A3%5D+%3D+%5B%22Griffiths-%22%5D%0Aname.append%28%22PhD%22%29%0A%0Aname+%3D+%22Bilbo+Baggins%22&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=true&textReferences=false&py=2&rawInputLstJSON=%5B%5D&curInstr=0

Supplementary material: This one works well at the memory visualiser.

The explanation: While y is a second label on the same object, z is a separate object with the same data. Writing

x[:] creates a new list containing all the elements of x (remember: [:] is equivalent to [0:<last>]). This is the

case whenever we take a slice from a list, not just when taking all the elements with [:].

The difference between y=x and z=x[:] is important!

Nested objects make it even more complicated:

Try the visualiser again.

Supplementary material: The copies that we make through slicing are called shallow copies: we don’t copy all the

objects they contain, only the references to them. This is why the nested list in x[0] is not copied, so z[0] still

refers to it. It is possible to actually create copies of all the contents, however deeply nested they are - this

is called a deep copy. Python provides methods for that in its standard library, in the copy module. You can read

more about that, as well as about shallow and deep copies, in the library reference.

1.4.5 Identity vs Equality

Having the same data is different from being the same actual object in memory:

The == operator checks, element by element, that two containers have the same data. The is operator checks that

they are actually the same object.

But, and this point is really subtle, for immutables, the python language might save memory by reusing a single

instantiated copy. This will always be safe.

This can be useful in understanding problems like the one above:

[0, 1, 2]

z[2] = "Really?"

x

[0, 'Gotcha!', 2]

y

[0, 'Gotcha!', 2]

z

[0, 1, 'Really?']

x = [["a", "b"], "c"]
y = x
z = x[0:2]

x[0][1] = "d"
z[1] = "e"

x

[['a', 'd'], 'c']

y

[['a', 'd'], 'c']

z

[['a', 'd'], 'e']

[1, 2] == [1, 2]

True

[1, 2] is [1, 2]

False

"Hello" == "Hello"

True

"Hello" is "Hello"

<>:1: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:1: SyntaxWarning: "is" with a literal. Did you mean "=="?
/tmp/ipykernel_5190/3904443404.py:1: SyntaxWarning: "is" with a literal. Did you
mean "=="?
 "Hello" is "Hello"

True

http://www.pythontutor.com/visualize.html#code=x+%3D+%5B%22What%27s%22,+%22Going%22,+%22On%3F%22%5D%0Ay+%3D+x%0Az+%3D+x%5B0%3A3%5D%0A%0Ay%5B1%5D+%3D+%22Gotcha%21%22%0Az%5B2%5D+%3D+%22Really%3F%22&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=true&textReferences=false&py=2&rawInputLstJSON=%5B%5D&curInstr=0
http://www.pythontutor.com/visualize.html#code=x%3D%5B%5B%27a%27,%27b%27%5D,%27c%27%5D%0Ay%3Dx%0Az%3Dx%5B0%3A2%5D%0A%0Ax%5B0%5D%5B1%5D%3D%27d%27%0Az%5B1%5D%3D%27e%27&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=true&textReferences=false&py=2&rawInputLstJSON=%5B%5D&curInstr=0
https://docs.python.org/3/library/copy.html

1.5 Dictionaries

Estimated time for this notebook: 10 minutes

1.5.1 The Python Dictionary

Python supports a container type called a dictionary.

This is also known as an “associative array”, “map” or “hash” in other languages.

In a list, we use a number to look up an element:

In a dictionary, we look up an element using another object of our choice:

Keys and Values

The things we can use to look up with are called keys:

The things we can look up are called values:

When we test for containment on a dict we test on the keys:

x = range(3)
y = x
z = x[:]

x == y

True

x is y

True

x == z

True

x is z

False

names = "Martin Luther King".split(" ")

names[1]

'Luther'

me = {"name": "James", "age": 39, "Jobs": ["Programmer", "Teacher"]}

me

{'name': 'James', 'age': 39, 'Jobs': ['Programmer', 'Teacher']}

me["Jobs"]

['Programmer', 'Teacher']

me["age"]

39

type(me)

dict

me.keys()

dict_keys(['name', 'age', 'Jobs'])

me.values()

dict_values(['James', 39, ['Programmer', 'Teacher']])

"Jobs" in me

True

"James" in me

False

"James" in me.values()

Immutable Keys Only

The way in which dictionaries work is one of the coolest things in computer science: the “hash table”. The details

of this are beyond the scope of this course, but we will consider some aspects in the section on performance

programming.

One consequence of this implementation is that you can only use immutable things as keys.

but:

Remember – square brackets denote lists, round brackets denote tuples.

Dictionary Order

Dictionaries will retain the order of the elements as they are defined (in Python versions >= 3.7).

Python does not consider the order of the elements relevant to equality:

1.5.2 Sets

A set is a list which cannot contain the same element twice. We make one by calling set() on any sequence, e.g. a

list or string.

Or by defining a literal like a dictionary, but without the colons:

This will be easier to read if we turn the set of letters back into a string, with join:

A set has no particular order, but is really useful for checking or storing unique values.

Set operations work as in mathematics:

True

good_match = {("Lamb", "Mint"): True, ("Bacon", "Chocolate"): False}

illegal = {["Lamb", "Mint"]: True, ["Bacon", "Chocolate"]: False}

TypeError Traceback (most recent call last)
Cell In[14], line 1
----> 1 illegal = {["Lamb", "Mint"]: True, ["Bacon", "Chocolate"]: False}

TypeError: unhashable type: 'list'

my_dict = {"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
print(my_dict)
print(my_dict.values())

{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4}
dict_values([0, 1, 2, 3, 4])

rev_dict = {"4": 4, "3": 3, "2": 2, "1": 1, "0": 0}
print(rev_dict)
print(rev_dict.values())

{'4': 4, '3': 3, '2': 2, '1': 1, '0': 0}
dict_values([4, 3, 2, 1, 0])

my_dict == rev_dict

True

name = "James Hetherington"
unique_letters = set(name)

unique_letters

{' ', 'H', 'J', 'a', 'e', 'g', 'h', 'i', 'm', 'n', 'o', 'r', 's', 't'}

primes_below_ten = {2, 3, 5, 7}

type(unique_letters)

set

type(primes_below_ten)

set

unique_letters

{' ', 'H', 'J', 'a', 'e', 'g', 'h', 'i', 'm', 'n', 'o', 'r', 's', 't'}

"".join(unique_letters)

'hgaetniom HsrJ'

x = set("Hello")
y = set("Goodbye")

x & y # Intersection

Your programs will be faster and more readable if you use the appropriate container type for your data’s meaning.

Always use a set for lists which can’t in principle contain the same data twice, always use a dictionary for

anything which feels like a mapping from keys to values.

1.6 Data structures

Estimated time for this notebook: 5 minutes

1.6.1 Nested Lists and Dictionaries

In research programming, one of our most common tasks is building an appropriate structure to model our complicated

data. Later in the course, we’ll see how we can define our own types, with their own attributes, properties, and

methods. But probably the most common approach is to use nested structures of lists, dictionaries, and sets to

model our data. For example, an address might be modelled as a dictionary with appropriately named fields:

A collection of people’s addresses is then a list of dictionaries:

A more complicated data structure, for example for a census database, might have a list of residents or employees

at each address:

Which is then a list of dictionaries, with keys which are strings or lists.

We can go further, e.g.:

And we can write code against our structures:

This was an example of a ‘list comprehension’, which have used to get data of this structure, and which we’ll see

more of in a moment…

1.7 Control and Flow

Estimated time for this notebook: 15 minutes

1.7.1 Turing completeness

Now that we understand how we can use objects to store and model our data, we only need to be able to control the

flow of our program in order to have a program that can, in principle, do anything!

Specifically we need to be able to:

Control whether a program statement should be executed or not, based on a variable. “Conditionality”

Jump back to an earlier point in the program, and run some statements again. “Branching”

Once we have these, we can write computer programs to process information in arbitrary ways: we are Turing

Complete!

1.7.2 Conditionality

{'e', 'o'}

x | y # Union

{'G', 'H', 'b', 'd', 'e', 'l', 'o', 'y'}

y - x # y intersection with complement of x: letters in Goodbye but not in Hello

{'G', 'b', 'd', 'y'}

UCL = {"City": "London", "Street": "Gower Street", "Postcode": "WC1E 6BT"}

James = {"City": "London", "Street": "Waterson Street", "Postcode": "E2 8HH"}

addresses = [UCL, James]

addresses

[{'City': 'London', 'Street': 'Gower Street', 'Postcode': 'WC1E 6BT'},
 {'City': 'London', 'Street': 'Waterson Street', 'Postcode': 'E2 8HH'}]

UCL["people"] = ["Clare", "James", "Owain"]

James["people"] = ["Sue", "James"]

addresses

[{'City': 'London',
 'Street': 'Gower Street',
 'Postcode': 'WC1E 6BT',
 'people': ['Clare', 'James', 'Owain']},
 {'City': 'London',
 'Street': 'Waterson Street',
 'Postcode': 'E2 8HH',
 'people': ['Sue', 'James']}]

UCL["Residential"] = False

leaders = [place["people"][0] for place in addresses]
leaders

['Clare', 'Sue']

Conditionality is achieved through Python’s if statement:

The absence of output here means the if clause prevented the print statement from running.

The first time through, the print statement never happened.

The controlled statements are indented. Once we remove the indent, the statements will once again happen

regardless.

Else and Elif

Python’s if statement has optional elif (else-if) and else clauses:

Try editing the value of x here, and note that other sections are found.

1.7.3 Comparison

True and False are used to represent boolean (true or false) values.

Comparison on strings is alphabetical.

But case sensitive:

There’s no automatic conversion of the string True to true:

And you cannot compare a string of a number to a number.

x = 5

if x < 0:
 print(x, " is negative")

x = -10

if x < 0:
 print(x, " is negative")

-10 is negative

x = 5
if x < 0:
 print("x is negative")
else:
 print("x is positive")

x is positive

x = 5
if x < 0:
 print("x is negative")
elif x == 0:
 print("x is zero")
else:
 print("x is positive")

x is positive

choice = "high"

if choice == "high":
 print(1)
elif choice == "medium":
 print(2)
else:
 print(3)

1

1 > 2

False

"UCL" > "KCL"

True

"UCL" > "kcl"

False

True == "True"

False

"1" < 2

TypeError Traceback (most recent call last)
Cell In[10], line 1
----> 1 "1" < 2

TypeError: '<' not supported between instances of 'str' and 'int'

"5" < 2

Any statement that evaluates to True or False can be used to control an if Statement.

Automatic Falsehood

Various other things automatically count as true or false, which can make life easier when coding:

We can use logical not and logical and to combine true and false:

not also understands magic conversion from false-like things to True or False.

But subtly, although these quantities evaluate True or False in an if statement, they’re not themselves actually

True or False under ==:

TypeError Traceback (most recent call last)
Cell In[11], line 1
----> 1 "5" < 2

TypeError: '<' not supported between instances of 'str' and 'int'

"1" > 2

TypeError Traceback (most recent call last)
Cell In[12], line 1
----> 1 "1" > 2

TypeError: '>' not supported between instances of 'str' and 'int'

mytext = "Hello"

if mytext:
 print("Mytext is not empty")

Mytext is not empty

mytext2 = ""

if mytext2:
 print("Mytext2 is not empty")

x = 3.2
if not (x > 0 and type(x) == int):
 print(x, "is not a positive integer")

3.2 is not a positive integer

not not "Who's there!"

True

bool("")

False

bool("James")

True

bool([])

False

bool(["a"])

True

bool({})

False

bool({"name": "James"})

True

bool(0)

False

bool(1)

True

[] == False

False

1.7.4 Indentation

In Python, indentation is semantically significant. You can choose how much indentation to use, so long as you are

consistent, but four spaces is conventional. Please do not use tabs.

In the notebook, and most good editors, when you press <tab>, you get four spaces.

No indentation when it is expected, results in an error:

but:

1.7.5 Pass

A statement expecting identation must have some indented code. This can be annoying when commenting things out.

(With #)

So the pass statement is used to do nothing.

1.8 Iteration

Estimated time for this notebook: 10 minutes

Our other aspect of control is looping back on ourselves.

We use for … in to “iterate” over lists:

Each time through the loop, the variable in the value slot is updated to the next element of the sequence.

1.8.1 Iterables

Any sequence type is iterable:

The above is a little puzzle, work through it to understand why it does what it does.

Dictionaries are Iterables

bool([]) == False

True

x = 2

if x > 0:
print(x)

 Cell In[30], line 2
 print(x)
 ^
IndentationError: expected an indented block

if x > 0:
 print(x)

2

if x > 0:
 # print x

print("Hello")

 Cell In[32], line 4
 print("Hello")
 ^
IndentationError: expected an indented block

if x > 0:
 # print x
 pass

print("Hello")

Hello

mylist = [3, 7, 15, 2]

for whatever in mylist:
 print(whatever**2)

9
49
225
4

vowels = "aeiou"
sarcasm = []

for letter in "Okay":
 if letter.lower() in vowels:
 repetition = 3
 else:
 repetition = 1

 sarcasm.append(letter * repetition)

"".join(sarcasm)

'OOOkaaay'

All sequences are iterables. Some iterables (things you can for loop over) are not sequences (things with you can

do x[5] to), for example sets and dictionaries.

1.8.2 Unpacking and Iteration

Unpacking can be useful with iteration:

for example, to iterate over the items in a dictionary as pairs:

1.8.3 Break, Continue

Continue skips to the next turn of a loop

Break stops the loop early

These aren’t useful that often, but are worth knowing about. There’s also an optional else clause on loops,

executed only if you don’t break, but I’ve never found that useful.

1.9 Classroom Exercises

List of exercises and estimated completion times

1a - Python Libraries 5 minutes

1b - Using Functions 10 minutes

1c - Operators 10 minutes

1d - Maze Model 25 minutes

1e - The Maze Population 10 minutes

Exercise 1a Python Libraries

current_year = 2022
founded = {"Barack Obama": 1961, "UCL": 1826, "The Alan Turing Institute": 2015}

for thing in founded:
 print(f"In {current_year} {thing} is {current_year - founded[thing]} years
old.")

In 2022 Barack Obama is 61 years old.
In 2022 UCL is 196 years old.
In 2022 The Alan Turing Institute is 7 years old.

triples = [[4, 11, 15], [39, 4, 18]]

for whatever in triples:
 print(whatever)

[4, 11, 15]
[39, 4, 18]

for first, middle, last in triples:
 print(middle)

11
4

A reminder that the words you use for variable names are arbitrary:
for hedgehog, badger, fox in triples:
 print(badger)

11
4

things = {
 "James": [1976, "Kendal"],
 "UCL": [1826, "Bloomsbury"],
 "Cambridge": [1209, "Cambridge"],
}

print(things.items())

dict_items([('James', [1976, 'Kendal']), ('UCL', [1826, 'Bloomsbury']),
('Cambridge', [1209, 'Cambridge'])])

for name, year in founded.items():
 print(name, "is", current_year - year, "years old.")

Barack Obama is 61 years old.
UCL is 196 years old.
The Alan Turing Institute is 7 years old.

for n in range(50):
 if n == 20:
 break
 if n % 2 == 0:
 continue
 print(n)

1
3
5
7
9
11
13
15
17
19

Relevant Sections: 1.0.2

The directory that contains this workbook also contains a Python file titled draw_infinity.py. Import it to a notebook

and make the figure in the same way as eight was drawn in section 1.0.2

Exercise 1b Using Functions

Relevant Sections: 1.2.1 to 1.2.5

Try to find the operator or function you need to calculate the following (the easiest way might be an internet

search).

What is 2 to the power 15?

Convert "It was the best of times" to uppercase.

Sort the list [10, 9, 0, 20, 8, 2, 30, 7, 3].

What is 100! ? (That is, what is the factorial of 100?) Hint: the factorial function is in the math library

Exercise 1c Operators

Relevant Sections: 1.2.5, 1.3.3

Which of the operators +, -, *, and / do something useful with the lists [1, 10, 100] and [5, 4, 7]?

What happens if you apply the operators +, -, *, / to a list and a number?

What about a string and a string?

Exercise 1d Maze Model

Relevant Sections: 1.5.1, 1.6.1

Work with a partner to design a data structure to represent a maze using dictionaries and lists.

Each place in the maze has a name, which is a string.

Each place in the maze has one or more people currently standing at it, by name.

Each place in the maze has a maximum capacity of people that can fit in it.

From each place in the maze, you can go from that place to a few other places, using a direction like ‘up’,

‘north’, or ‘sideways’

Create an example instance, in a notebook, of a simple structure for your maze:

The front room can hold 2 people. James is currently there. You can go outside to the garden, or upstairs to

the bedroom, or north to the kitchen.

From the kitchen, you can go south to the front room. It fits 1 person.

From the garden you can go inside to front room. It fits 3 people. Sue is currently there.

From the bedroom, you can go downstairs to the front room. You can also jump out of the window to the garden.

It fits 2 people.

Make sure that your model:

Allows empty rooms

Allows you to jump out of the upstairs window, but not to fly back up.

Allows rooms which people can’t fit in.

or

Exercise 1e The Maze Population

Relevant Sections: 1.5.1, 1.6.1, 1.8.1, 1.8.2

Take your maze data structure. Write a program to count the total number of people in the maze, and also determine

the total possible occupants.

2. Intermediate Python
List comprehensions

Functions in Python

Modules in Python

An introduction to classes

Working with files

Interacting with the internet

Classroom Exercises

Contents

2.0 Comprehensions (10 minutes)

2.1 Functions (15 minutes)

2.2 Using Libraries (5 minutes)

2.3 Working with files (15 minutes)

2.4 Getting data from the Internet (10 minutes)

2.5 Data analysis example (20 minutes)

2.6 Defining your own classes (20 minutes)

2.7 Data analysis with classes (10 minutes)

Total time: 1 hr 45 minutes

house = ["Your answer here"]

house = { "Your answer here" }

Exercises

Classroom exercises are grouped together at the end of the module: 2.7 Classroom Exercises. Each exercise is

labelled with any sections whose contents are relevant. We recommend that instructors schedule the exercises to be

done in groups during breaks in the taught content. However, it is important that participants also have some time

away from their screens. Exercises can also be left as self-paced homework assignments if preferred.

2.0 Comprehensions

Estimated time for this notebook: 10 minutes

2.0.1 The list comprehension

If you write a for loop inside a pair of square brackets for a list, you magic up a list as defined. This can make

for concise but hard to read code, so be careful.

Which is equivalent to the following code without using comprehensions:

You can do quite weird and cool things with comprehensions:

2.0.2 Selection in comprehensions

You can write an if statement in comprehensions too:

Consider the following, and make sure you understand why it works:

2.0.3 Comprehensions versus building lists with append:

This code:

Does the same as the comprehension above. The comprehension is generally considered more readable.

Comprehensions are therefore an example of what we call ‘syntactic sugar’: they do not increase the capabilities of

the language.

Instead, they make it possible to write the same thing in a more readable way.

Almost everything we learn from now on will be either syntactic sugar or interaction with something other than

idealised memory, such as a storage device or the internet. Once you have variables, conditionality, and branching,

your language can do anything. (And this can be proved.)

2.0.4 Nested comprehensions

If you write two for statements in a comprehension, you get a single array generated over all the pairs:

You can select on either, or on some combination:

If you want something more like a matrix, you need to do two nested comprehensions!

[2**x for x in range(10)]

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

result = []
for x in range(10):
 result.append(2**x)

result

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

[len(str(2**x)) for x in range(10)]

[1, 1, 1, 1, 2, 2, 2, 3, 3, 3]

[2**x for x in range(30) if x % 3 == 0]

[1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728]

"".join([letter for letter in "James Hetherington" if letter.lower() not in
"aeiou"])

'Jms Hthrngtn'

result = []
for x in range(30):
 if x % 3 == 0:
 result.append(2**x)
result

[1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728]

[x - y for x in range(4) for y in range(4)]

[0, -1, -2, -3, 1, 0, -1, -2, 2, 1, 0, -1, 3, 2, 1, 0]

[x - y for x in range(4) for y in range(4) if x >= y]

[0, 1, 0, 2, 1, 0, 3, 2, 1, 0]

[[x - y for x in range(4)] for y in range(4)]

Note the subtly different square brackets.

Note that the list order for multiple or nested comprehensions can be confusing:

2.0.5 Dictionary Comprehensions

You can automatically build dictionaries, by using a list comprehension syntax, but with curly brackets and a

colon:

2.0.6 List-based thinking

Once you start to get comfortable with comprehensions, you find yourself working with containers, nested groups of

lists and dictionaries, as the ‘things’ in your program, not individual variables.

Given a way to analyse some dataset, we’ll find ourselves writing stuff like:

There are lots of built-in methods that provide actions on lists as a whole:

My favourite is map, which, similar to a list comprehension, applies one function to every member of a list:

So I can write:

We’ll learn more about map and similar functions when we discuss functional programming later in the course.

2.1 Functions

Estimated time for this notebook: 15 minutes

Defining functions which put together code to make a more complex task seem simple from the outside is the most

important thing in programming. We can wrap code up in a function, so that we can repeatedly get just the

information we want.

2.1.1 Definition

We use def to define a function, and return to pass back a value: The input comes in in brackets after the function

name:

2.1.2 Default Parameters

[[0, 1, 2, 3], [-1, 0, 1, 2], [-2, -1, 0, 1], [-3, -2, -1, 0]]

[x + y for x in ["a", "b", "c"] for y in ["1", "2", "3"]]

['a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3']

[[x + y for x in ["a", "b", "c"]] for y in ["1", "2", "3"]]

[['a1', 'b1', 'c1'], ['a2', 'b2', 'c2'], ['a3', 'b3', 'c3']]

{(str(x)) * 3: x for x in range(3)}

{'000': 0, '111': 1, '222': 2}

analysed_data = [analyze(datum) for datum in data]

any([True, False, True])

True

all([True, False, True])

False

max([1, 2, 3])

3

sum([1, 2, 3])

6

[str(x) for x in range(10)]

['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

list(map(str, range(10)))

['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

analysed_data = map(analyse, data)

def double(x):
 return x * 2

print(double(5), double([5]), double("five"))

10 [5, 5] fivefive

We can specify default values for parameters:

If you have some parameters with defaults, and some without, those with defaults must go later.

If you have multiple default arguments, you can specify neither, one or both:

2.1.3 Early Return

Return without arguments can be used to exit early from a function

Here’s a slightly convoluted example of a function which will return early under specific conditions. In this case

if a list contains the string ‘cat’.

2.1.4 Scoping

There are differences in how variables and names are accessed by your code based on where they are defined.

Within this notebook any variables that have been defined outside of a function will be available to the rest of

the notebook. At this point in the notebook, x has not been defined.

If we now define x and write and call a function in which uses it; the function can still access x, even if x isn’t

given as an argument.

def jeeves(name="Sir"):
 return f"Very good, {name}"

jeeves()

'Very good, Sir'

jeeves("James")

'Very good, James'

def jeeves(greeting="Very good", name="Sir"):
 return f"{greeting}, {name}"

jeeves()

'Very good, Sir'

jeeves("Hello")

'Hello, Sir'

jeeves(name="James")

'Very good, James'

jeeves(greeting="Suits you")

'Suits you, Sir'

jeeves("Hello", "Sailor")

'Hello, Sailor'

def are_there_cats(my_input_list):

 if "cat" in my_input_list: # If the string "cat" is in the list
 print("There is a cat in here") # print a statement to screen
 return

 print("Nothing to see here")

first_list = ["cat", "dog", "hamster", 42]

second_list = ["duck", 17, "elk"]

are_there_cats(first_list)

There is a cat in here

are_there_cats(second_list)

Nothing to see here

x

NameError Traceback (most recent call last)
Cell In[15], line 1
----> 1 x

NameError: name 'x' is not defined

However if we define y locally - in a function - we can access it from within that function:

However y isn’t accessible globally - that is it isn’t available outside of the function in which it was defined

Note for the two functions above we used syntax for building strings that contain the values of variables. You can

read more about it here or in the official documentation for formatted string literals; f-strings.

2.1.5 Side effects

Functions can do things to change their mutable arguments, so return is optional.

This is pretty awful style, in general, functions should normally be side-effect free.

Here is a contrived example of a function that makes plausible use of a side-effect

In this example, we’re using [:] to access into the same list, and write its data.

would just move a local label, not change the input.

See Module 1.5 - Memory and Containers for a refresher

But I’d usually just write this as a function which returned the output:

Let’s remind ourselves of the behaviour for modifying lists in-place using [:] with a simple array:

2.1.6 Unpacking arguments

x = 5 # Define x now

def can_we_see_x():
 print(f"x = {x}")

can_we_see_x()

x = 5

def can_we_see_y():
 y = 7 # Define y in the function
 print(f"x = {x}")
 print(f"y = {y}")

can_we_see_y()

x = 5
y = 7

y

NameError Traceback (most recent call last)
<ipython-input-18-9063a9f0e032> in <module>
----> 1 y

NameError: name 'y' is not defined

def double_inplace(vec):
 vec[:] = [element * 2 for element in vec]

z = list(range(4))
double_inplace(z)
print(z)

[0, 2, 4, 6]

letters = ["a", "b", "c", "d", "e", "f", "g"]
letters[:] = []

vec = [element*2 for element in vec]

def double(vec):
 return [element * 2 for element in vec]

x = 5
x = 7
x = ["a", "b", "c"]
y = x

x

['a', 'b', 'c']

x[:] = ["Hooray!", "Yippee"]

y

['Hooray!', 'Yippee']

def arrow(before, after):
 return str(before) + " -> " + str(after)

arrow(1, 3)

'1 -> 3'

https://realpython.com/python-string-formatting/#3-string-interpolation-f-strings-python-36
https://docs.python.org/3/tutorial/inputoutput.html#tut-f-strings

If a function that takes multiple arguments is given an iterable object prepended with ‘*’, each element of that

object is taken in turn and used to fill the function’s arguments one-by-one.

This can be quite powerful:

2.1.7 Sequence Arguments

Similiarly, if a * is used in the definition of a function, multiple arguments are absorbed into a list inside the

function:

2.1.8 Keyword Arguments

If two asterisks are used, named arguments are supplied inside the function as a dictionary:

These different approaches can be mixed:

2.2 Using Libraries
Estimated time for this notebook: 5 minutes

2.2.1 Import

Research programming is all about using libraries: tools other people have provided programs that do many cool

things. By combining them we can feel really powerful but doing minimum work ourselves.

The python syntax to import someone else’s library is “import”. To use a function or type from a python library,

rather than a built-in function or type, we have to import the library.

We call these libraries modules:

x = [1, -1]
arrow(*x)

'1 -> -1'

charges = {"neutron": 0, "proton": 1, "electron": -1}
for particle in charges.items():
 print(arrow(*particle))

neutron -> 0
proton -> 1
electron -> -1

def doubler(*sequence):
 return [x * 2 for x in sequence]

doubler(1, 2, 3)

[2, 4, 6]

doubler(5, 2, "Wow!")

[10, 4, 'Wow!Wow!']

def arrowify(**args):
 for key, value in args.items():
 print(key + " -> " + value)

arrowify(neutron="n", proton="p", electron="e")

neutron -> n
proton -> p
electron -> e

def somefunc(a, b, *args, **kwargs):
 print("A:", a)
 print("B:", b)
 print("args:", args)
 print("keyword args", kwargs)

somefunc(1, 2, 3, 4, 5, fish="Haddock")

A: 1
B: 2
args: (3, 4, 5)
keyword args {'fish': 'Haddock'}

math.sin(1.6)

NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 math.sin(1.6)

NameError: name 'math' is not defined

import math

math.sin(1.6)

0.9995736030415051

type(math)

The tools supplied by a module are attributes of the module, and as such, are accessed with a dot.

They include properties as well as functions:

You can always find out where on your storage medium a library has been imported from:

Note that import does not install libraries. It just makes them available to your current notebook session, assuming

they are already installed. Installing libraries is harder, and we’ll cover it later. So what libraries are

available? Until you install more, you might have just the modules that come with Python, the standard library.

Supplementary Materials: Review the list of standard library modules: https://docs.python.org/library/

If you installed via Anaconda, then you also have access to a bunch of modules that are commonly used in research.

Supplementary Materials: Review the list of modules that are packaged with Anaconda by default on different

architectures: https://docs.anaconda.com/anaconda/packages/pkg-docs/ (modules installed by default are shown with

ticks)

We’ll see later how to add more libraries to our setup.

Why bother?

Why bother with modules? Why not just have everything available all the time?

The answer is that there are only so many names available! Without a module system, every time I made a variable

whose name matched a function in a library, I’d lose access to it. In the olden days, people ended up having to

make really long variable names, thinking their names would be unique, and they still ended up with “name clashes”.

The module mechanism avoids this.

2.2.2 Importing from modules

Still, it can be annoying to have to write math.sin(math.pi) instead of sin(pi). Things can be imported from modules

to become part of the current module:

module

dir(math)

['__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'acos',
 'acosh',
 'asin',
 'asinh',
 'atan',
 'atan2',
 'atanh',
 'ceil',
 'comb',
 'copysign',
 'cos',
 'cosh',
 'degrees',
 'dist',
 'e',
 'erf',
 'erfc',
 'exp',
 'expm1',
 'fabs',
 'factorial',
 'floor',
 'fmod',
 'frexp',
 'fsum',
 'gamma',
 'gcd',
 'hypot',
 'inf',
 'isclose',
 'isfinite',
 'isinf',
 'isnan',
 'isqrt',
 'ldexp',
 'lgamma',
 'log',
 'log10',
 'log1p',
 'log2',
 'modf',
 'nan',
 'perm',
 'pi',
 'pow',
 'prod',
 'radians',
 'remainder',
 'sin',
 'sinh',
 'sqrt',
 'tan',
 'tanh',
 'tau',
 'trunc']

math.pi

3.141592653589793

print(math.__file__[0:50])
print(math.__file__[50:])

/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3
.8/lib-dynload/math.cpython-38-x86_64-linux-gnu.so

https://docs.python.org/library/
https://docs.anaconda.com/anaconda/packages/pkg-docs/

Importing one-by-one like this is a nice compromise between typing and risk of name clashes.

It is possible to import everything from a module, but you risk name clashes.

Import and rename

You can rename things as you import them to avoid clashes or for typing convenience

2.3 Working with files

Estimated time for this notebook: 15 minutes

2.3.1 Background

Loading data from files

An important part of this course is about using Python to analyse and visualise data. Most data, of course, is

supplied to us in various formats: spreadsheets, database dumps, or text files in various formats (csv, tsv, json,

yaml, hdf5, netcdf) It is also stored in some medium: on a local disk, a network drive, or on the internet in

various ways. It is important to distinguish the data format, how the data is structured into a file, from the

data’s storage, where it is put.

We’ll look first at the question of data transport: loading data from a disk, and at downloading data from the

internet. Then we’ll look at data parsing: building Python structures from the data. These are related, but

separate questions.

An example datafile

Let’s write an example datafile to disk so we can investigate it. We’ll just use a plain-text file. Jupyter

notebook provides a way to do this: if we put %%writefile at the top of a cell, instead of being interpreted as

python, the cell contents are saved to disk.

Where did that go? It went to the current folder, which for a notebook, by default, is where the notebook is on

disk.

import math

math.sin(math.pi)

1.2246467991473532e-16

from math import sin

sin(math.pi)

1.2246467991473532e-16

from math import *

sin(pi)

1.2246467991473532e-16

import math as m

m.cos(0)

1.0

pi = 3
from math import pi as realpi

print(sin(pi), sin(realpi))

0.1411200080598672 1.2246467991473532e-16

%%writefile mydata.txt
A poet once said, 'The whole universe is in a glass of wine.'
We will probably never know in what sense he meant it,
for poets do not write to be understood.
But it is true that if we look at a glass of wine closely enough we see the entire
universe.
There are the things of physics: the twisting liquid which evaporates depending
on the wind and weather, the reflection in the glass;
and our imagination adds atoms.
The glass is a distillation of the earth's rocks,
and in its composition we see the secrets of the universe's age, and the evolution
of stars.
What strange array of chemicals are in the wine? How did they come to be?
There are the ferments, the enzymes, the substrates, and the products.
There in wine is found the great generalization; all life is fermentation.
Nobody can discover the chemistry of wine without discovering,
as did Louis Pasteur, the cause of much disease.
How vivid is the claret, pressing its existence into the consciousness that
watches it!
If our small minds, for some convenience, divide this glass of wine, this
universe,
into parts --
physics, biology, geology, astronomy, psychology, and so on --
remember that nature does not know it!

So let us put it all back together, not forgetting ultimately what it is for.
Let it give us one more final pleasure; drink it and forget it all!
 - Richard Feynman

Writing mydata.txt

import os # The 'os' module gives us all the tools we need to search in the file
system

os.getcwd() # Use the 'getcwd' function from the 'os' module to find where we are
on disk.

Can we see if it is there?

Yep! Note how we used a list comprehension to filter all the extraneous files.

2.4.2 Path independence and os

We can use dirname to get the parent folder for a folder, in a platform independent-way.

We could do this manually using split:

But this would not work on Windows, where path elements are separated with a \ instead of a /. So it’s important to

use os.path for this stuff.

Supplementary Materials: If you’re not already comfortable with how files fit into folders, and folders form a

tree, with folders containing subfolders, then look at http://swcarpentry.github.io/shell-novice/02-

filedir/index.html.

Satisfy yourself that after using %%writefile, you can then find the file on disk with Windows Explorer, macOS

Finder, or the Linux Shell.

We can see how in Python we can investigate the file system with functions in the os module, using just the same

programming approaches as for anything else.

We’ll gradually learn more features of the os module as we go, allowing us to move around the disk, walk around the

disk looking for relevant files, and so on. These will be important to master for automating our data analyses.

2.3.3 The python file type

So, let’s read our file:

We can go line-by-line, by treating the file as an iterable:

If we do that again, the file has already finished, there is no more data.

We need to ‘rewind’ it!

'/home/runner/work/rse-course/rse-course/module02_intermediate_python'

import os

[x for x in os.listdir(os.getcwd()) if ".txt" in x]

['mydata.txt']

os.path.dirname(os.getcwd())

'/home/runner/work/rse-course/rse-course'

"/".join(os.getcwd().split("/")[:-1])

'/home/runner/work/rse-course/rse-course'

myfile = open("mydata.txt")

type(myfile)

_io.TextIOWrapper

[x for x in myfile]

["A poet once said, 'The whole universe is in a glass of wine.'\n",
 'We will probably never know in what sense he meant it, \n',
 'for poets do not write to be understood. \n',
 'But it is true that if we look at a glass of wine closely enough we see the
entire universe. \n',
 'There are the things of physics: the twisting liquid which evaporates
depending\n',
 'on the wind and weather, the reflection in the glass;\n',
 'and our imagination adds atoms.\n',
 "The glass is a distillation of the earth's rocks,\n",
 "and in its composition we see the secrets of the universe's age, and the
evolution of stars. \n",
 'What strange array of chemicals are in the wine? How did they come to be? \n',
 'There are the ferments, the enzymes, the substrates, and the products.\n',
 'There in wine is found the great generalization; all life is fermentation.\n',
 'Nobody can discover the chemistry of wine without discovering, \n',
 'as did Louis Pasteur, the cause of much disease.\n',
 'How vivid is the claret, pressing its existence into the consciousness that
watches it!\n',
 'If our small minds, for some convenience, divide this glass of wine, this
universe, \n',
 'into parts -- \n',
 'physics, biology, geology, astronomy, psychology, and so on -- \n',
 'remember that nature does not know it!\n',
 '\n',
 'So let us put it all back together, not forgetting ultimately what it is
for.\n',
 'Let it give us one more final pleasure; drink it and forget it all!\n',
 ' - Richard Feynman\n']

[x for x in myfile]

[]

myfile.seek(0)
[len(x) for x in myfile if "know" in x]

[56, 39]

http://swcarpentry.github.io/shell-novice/02-filedir/index.html

It’s really important to remember that a file is a different built in type than a string.

2.3.4 Reading Files

We can read one line at a time with readline:

We can read the whole remaining file with read:

Which means that when a file is first opened, read is useful to just get the whole thing as a string:

You can also read just a few characters:

2.3.5 Converting Strings to Files

Because files and strings are different types, we CANNOT just treat strings as if they were files:

This is important, because some file format parsers expect input from a file and not a string. We can convert

between them using the StringIO class of the io module in the standard library:

myfile.seek(0)
first = myfile.readline()

first

"A poet once said, 'The whole universe is in a glass of wine.'\n"

second = myfile.readline()

second

'We will probably never know in what sense he meant it, \n'

rest = myfile.read()

rest

"for poets do not write to be understood. \nBut it is true that if we look at a
glass of wine closely enough we see the entire universe. \nThere are the things of
physics: the twisting liquid which evaporates depending\non the wind and weather,
the reflection in the glass;\nand our imagination adds atoms.\nThe glass is a
distillation of the earth's rocks,\nand in its composition we see the secrets of
the universe's age, and the evolution of stars. \nWhat strange array of chemicals
are in the wine? How did they come to be? \nThere are the ferments, the enzymes,
the substrates, and the products.\nThere in wine is found the great
generalization; all life is fermentation.\nNobody can discover the chemistry of
wine without discovering, \nas did Louis Pasteur, the cause of much disease.\nHow
vivid is the claret, pressing its existence into the consciousness that watches
it!\nIf our small minds, for some convenience, divide this glass of wine, this
universe, \ninto parts -- \nphysics, biology, geology, astronomy, psychology, and
so on -- \nremember that nature does not know it!\n\nSo let us put it all back
together, not forgetting ultimately what it is for.\nLet it give us one more final
pleasure; drink it and forget it all!\n - Richard Feynman\n"

open("mydata.txt").read()

"A poet once said, 'The whole universe is in a glass of wine.'\nWe will probably
never know in what sense he meant it, \nfor poets do not write to be understood.
\nBut it is true that if we look at a glass of wine closely enough we see the
entire universe. \nThere are the things of physics: the twisting liquid which
evaporates depending\non the wind and weather, the reflection in the glass;\nand
our imagination adds atoms.\nThe glass is a distillation of the earth's
rocks,\nand in its composition we see the secrets of the universe's age, and the
evolution of stars. \nWhat strange array of chemicals are in the wine? How did
they come to be? \nThere are the ferments, the enzymes, the substrates, and the
products.\nThere in wine is found the great generalization; all life is
fermentation.\nNobody can discover the chemistry of wine without discovering, \nas
did Louis Pasteur, the cause of much disease.\nHow vivid is the claret, pressing
its existence into the consciousness that watches it!\nIf our small minds, for
some convenience, divide this glass of wine, this universe, \ninto parts --
\nphysics, biology, geology, astronomy, psychology, and so on -- \nremember that
nature does not know it!\n\nSo let us put it all back together, not forgetting
ultimately what it is for.\nLet it give us one more final pleasure; drink it and
forget it all!\n - Richard Feynman\n"

myfile.seek(1335)

1335

myfile.read(15)

'\n - Richard F'

mystring = "Hello World\n My name is James"

mystring

'Hello World\n My name is James'

mystring.readline()

AttributeError Traceback (most recent call last)
Cell In[22], line 1
----> 1 mystring.readline()

AttributeError: 'str' object has no attribute 'readline'

from io import StringIO

https://docs.python.org/3/library/io.html

Note that in a string, \n is used to represent a newline.

2.4.6 Closing files

We really ought to close files when we’ve finished with them, as it makes the computer more efficient. (On a shared

computer, this is particularly important)

Because it’s so easy to forget this, python provides a context manager to open a file, then close it automatically

at the end of an indented block:

The code to be done while the file is open is indented, just like for an if statement.

You should pretty much always use this syntax for working with files.

2.3.7 Writing files

We might want to create a file from a string in memory. We can’t do this with the notebook’s %%writefile – this is

just a notebook convenience, and isn’t very programmable.

When we open a file, we can specify a ‘mode’, in this case, ‘w’ for writing. (‘r’ for reading is the default.)

And we can “append” to a file with mode ‘a’:

If a file already exists, mode w will overwrite it.

2.4 Getting data from the Internet

Estimated time for this notebook: 10 minutes

We’ve seen about obtaining data from our local file system.

The other common place today that we might want to obtain data is from the internet.

It’s very common today to treat the web as a source and store of information; we need to be able to

programmatically download data, and place it in Python objects.

We may also want to be able to programmatically upload data, for example, to automatically fill in forms.

This can be really powerful if we want to, for example, do automated metaanalysis across a selection of research

papers.

2.4.1 URLs

All internet resources are defined by a Uniform Resource Locator.

mystringasafile = StringIO(mystring)

mystringasafile.readline()

'Hello World\n'

mystringasafile.readline()

' My name is James'

myfile.close()

with open("mydata.txt") as somefile:
 content = somefile.read()

content

"A poet once said, 'The whole universe is in a glass of wine.'\nWe will probably
never know in what sense he meant it, \nfor poets do not write to be understood.
\nBut it is true that if we look at a glass of wine closely enough we see the
entire universe. \nThere are the things of physics: the twisting liquid which
evaporates depending\non the wind and weather, the reflection in the glass;\nand
our imagination adds atoms.\nThe glass is a distillation of the earth's
rocks,\nand in its composition we see the secrets of the universe's age, and the
evolution of stars. \nWhat strange array of chemicals are in the wine? How did
they come to be? \nThere are the ferments, the enzymes, the substrates, and the
products.\nThere in wine is found the great generalization; all life is
fermentation.\nNobody can discover the chemistry of wine without discovering, \nas
did Louis Pasteur, the cause of much disease.\nHow vivid is the claret, pressing
its existence into the consciousness that watches it!\nIf our small minds, for
some convenience, divide this glass of wine, this universe, \ninto parts --
\nphysics, biology, geology, astronomy, psychology, and so on -- \nremember that
nature does not know it!\n\nSo let us put it all back together, not forgetting
ultimately what it is for.\nLet it give us one more final pleasure; drink it and
forget it all!\n - Richard Feynman\n"

with open("mywrittenfile", "w") as target:
 target.write("Hello")
 target.write("World")

with open("mywrittenfile", "r") as source:
 print(source.read())

HelloWorld

with open("mywrittenfile", "a") as target:
 target.write("Hello")
 target.write("James")

with open("mywrittenfile", "r") as source:
 print(source.read())

HelloWorldHelloJames

https://static-maps.yandex.ru:443/1.x/?z=12&size=400%2C400&ll=-0.1275%2C51.51&l=sat&lang=en_US

A url consists of:

A scheme (http, https, ssh, …)

A host (static-maps.yandex.ru, the name of the remote computer you want to talk to)

A port (optional, most protocols have a typical port associated with them, e.g. 443 for https)

A path (Like a file path on the machine, here it is 1.x)

A query part after a ?, (optional, usually ampersand-separated parameters e.g. lang=en_US, or z=12)

Supplementary materials: These can actually be different for different protocols, the above is a simplification,

you can see more, for example, at https://en.wikipedia.org/wiki/URI_scheme

URLs are not allowed to include all characters; we need to, for example, “escape” a space that appears inside the

URL, replacing it with %20, so e.g. a request of http://some example.com/ would need to be http://some%20example.com/. In

the URL above, the comma in the size parameter value size=400,400 has to be replaced with %2C to give size=400%2C400.

Supplementary materials: The code used to replace each character is the ASCII code for it.

Supplementary materials: The escaping rules are quite subtle. See https://en.wikipedia.org/wiki/Percent-encoding.

The standard library provides the urlencode function that can take care of this for you.

2.4.2 Requests

The python requests library can help us manage and manipulate URLs. It is easier to use than the ‘urllib’ library

that is part of the standard library, and is included with anaconda and canopy. It sorts out escaping, parameter

encoding, and so on for us.

To request the above URL, for example, we write:

When we do a request, the result comes back as text. For the png image in the above, this isn’t very readable:

Just as for file access, therefore, we will need to send the text we get to a python module which understands that

file format.

Again, it is important to separate the transport model (e.g. a file system, or an “http request” for the web) from

the data model of the data that is returned.

2.4.3 Example: Sunspots

Let’s try to get something scientific: the sunspot cycle data from http://sidc.be/silso/home

This looks like semicolon-separated data, with different records on different lines. (Line separators come out as

\n)

There are many many scientific datasets which can now be downloaded like this - integrating the download into your

data pipeline can help to keep your data flows organised.

import requests

response = requests.get(
 "https://static-maps.yandex.ru:443/1.x",
 params={
 "size": "400,400", # size of map
 "ll": "-0.1275,51.51", # longitude & latitude of centre
 "z": 12, # zoom level
 "l": "sat", # map layer (satellite image)
 "lang": "en_US", # language
 },
 timeout=60,
)

response.content[0:50]

b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x01\x00H\x00H\x00\x00\xff\xdb\x00C\x00\
x08\x06\x06\x07\x06\x05\x08\x07\x07\x07\t\t\x08\n\x0c\x14\r\x0c\x0b\x0b\x0c\x19\x1
2\x13\x0f'

from IPython.display import Image

Image(response.content)

spots = requests.get("http://www.sidc.be/silso/INFO/snmtotcsv.php",
timeout=60).text

spots[0:80]

'1749;01;1749.042; 96.7; -1.0; -1;1\n1749;02;1749.123; 104.3; -1.0;
-1;1\n1749'

http://static-maps.yandex.ru/
https://en.wikipedia.org/wiki/URI_scheme
http://www.asciitable.com/
https://en.wikipedia.org/wiki/Percent-encoding
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlencode
http://docs.python-requests.org/en/latest/
http://sidc.be/silso/home

Writing our own Parser

We’ll need a python library to handle semicolon-separated data like the sunspot data.

You might be thinking: “But I can do that myself!”:

But don’t: what if, for example, one of the records contains a separator inside it; most computers will put the

content in quotes, so that, for example,

has three fields, the first of which is

The naive code above would give four fields, of which the first is

You’ll never manage to get all that right; so you’ll be better off using a library to do it.

2.4.4 Writing data to the internet

Note that we’re using requests.get. get is used to receive data from the web. You can also use post to fill in a web-

form programmatically.

Supplementary material: Learn about using post with requests.

Supplementary material: Learn about the different kinds of http request: Get, Post, Put, Delete…

This can be used for all kinds of things, for example, to programmatically add data to a web resource. It’s all

well beyond our scope for this course, but it’s important to know it’s possible, and start to think about the

scientific possibilities.

2.5 Data analysis example

Estimated time for this notebook: 20 minutes

We’re now going to bring together everything we’ve learned about Python so far to perform a simple but complete

analysis. We will retrieve data, do some computations based on it, and visualise the results.

As we show the code for different parts of the work, we will be touching on various aspects you may want to keep in

mind, either related to Python specifically, or to research programming more generally.

2.5.1 Geolocation

If you try to follow along on this example in an Jupyter notebook, you might find that you just got an error

message.

You’ll need to wait until we’ve covered installation of additional python libraries later in the course, then come

back to this and try again. For now, just follow along and try get the feel for how programming for data-focused

research works.

lines = spots.split("\n")
lines[0:5]

['1749;01;1749.042; 96.7; -1.0; -1;1',
 '1749;02;1749.123; 104.3; -1.0; -1;1',
 '1749;03;1749.204; 116.7; -1.0; -1;1',
 '1749;04;1749.288; 92.8; -1.0; -1;1',
 '1749;05;1749.371; 141.7; -1.0; -1;1']

years = [line.split(";")[0] for line in lines]

years[0:15]

['1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1749',
 '1750',
 '1750',
 '1750']

"Something; something"; something; something

Something; something

"Something

import geopy # A python library for investigating geographic information.
https://pypi.org/project/geopy/

geocoder = geopy.geocoders.Nominatim(user_agent="rse-course")
geocoder.geocode("Cambridge", exactly_one=False)

http://docs.python-requests.org/en/latest/user/quickstart/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Note that the results are a list of Location objects, where each Location knows its name, latitude and longitude.

Let’s define and test a geolocate function, storing the result in a variable

2.5.2 Using the Yandex API

The Yandex API allows us to fetch a map of a place, given a longitude and latitude. The URLs look like:

https://static-maps.yandex.ru/1.x/?size=400,400&ll=-0.1275,51.51&z=10&l=sat&lang=en_US We’ll probably end up

working out these URLs quite a bit. So we’ll make ourselves another function to build up a URL given our

parameters.

2.5.3 Checking our work

Let’s see what URL we ended up with:

We can write automated tests so that if we change our code later, we can check the results are still valid.

Our previous function comes back with an object representing the web request. In object oriented programming, we use

the . operator to get access to a particular property of the object, in this case, the actual image at that URL is

in the content property. It’s a big file, so we’ll just show the first few characters here:

2.5.4 Displaying the results

We’ll need to do this a lot, so let’s wrap up our previous function in another function, to save on typing.

We can use a library that comes with Jupyter notebook to display the image. Being able to work with variables which

contain images, or documents, or any other weird kind of data, just as easily as we can with numbers or letters, is

one of the really powerful things about modern programming languages like Python.

[Location(Cambridge, Cambridgeshire, Cambridgeshire and Peterborough, England,
United Kingdom, (52.2055314, 0.1186637, 0.0)),
 Location(Cambridge, Middlesex County, Massachusetts, United States, (42.3656347,
-71.1040018, 0.0)),
 Location(Cambridge, Region of Waterloo, Ontario, Canada, (43.3600536,
-80.3123023, 0.0)),
 Location(Cambridge, Henry County, Illinois, United States, (41.3025257,
-90.1962861, 0.0)),
 Location(Cambridge, Isanti County, Minnesota, 55008, United States, (45.5727408,
-93.2243921, 0.0)),
 Location(Cambridge, Story County, Iowa, United States, (41.8990768, -93.5294029,
0.0)),
 Location(Cambridge, Dorchester County, Maryland, 21613, United States,
(38.5714624, -76.0763177, 0.0)),
 Location(Cambridge, Guernsey County, Ohio, 43725, United States, (40.031183,
-81.5884561, 0.0)),
 Location(Cambridge, Jefferson County, Kentucky, United States, (38.2217369,
-85.616627, 0.0)),
 Location(Cambridge, Cowley County, Kansas, United States, (37.316988,
-96.66633224663678, 0.0))]

def geolocate(place):
 return geocoder.geocode(place, exactly_one=False)[0][1]

london_location = geolocate("London")
print(london_location)

(51.4893335, -0.14405508452768728)

import requests

def request_map_at(lat, long, satellite=True, zoom=12, size=(400, 400)):
 base = "https://static-maps.yandex.ru/1.x/?"
 params = dict(
 z=zoom,
 size=str(size[0]) + "," + str(size[1]),
 ll=str(long) + "," + str(lat),
 l="sat" if satellite else "map",
 lang="en_US",
)
 return requests.get(base, params=params, timeout=60)

map_response = request_map_at(51.5072, -0.1275)

url = map_response.url
print(url)

https://static-maps.yandex.ru/1.x/?
z=12&size=400%2C400&ll=-0.1275%2C51.5072&l=sat&lang=en_US

assert "https://static-maps.yandex.ru/1.x/?" in url
assert "ll=-0.1275%2C51.5072" in url
assert "z=12" in url
assert "size=400%2C400" in url

map_response.content[0:20]

b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x01\x00H\x00H\x00\x00'

def map_at(*args, **kwargs):
 return request_map_at(*args, **kwargs).content

from IPython.display import Image

map_png = map_at(*london_location)

print("The type of our map result is actually a: ", type(map_png))

The type of our map result is actually a: <class 'bytes'>

https://static-maps.yandex.ru/1.x/?size=400,400&ll=-0.1275,51.51&z=10&l=sat&lang=en_US

2.5.5 Measuring urbanisation

Now we get to our research project: we want to find out how urbanised the world is. For this we’ll use satellite

imagery, along a line between two cities. We expect the satellite image to be greener in the countryside.

Let’s start by importing the libraries we need.

and then define what we count as green:

This code has assumed we have our pixel data for the image as a 3-d matrix, with each of the three

layers being red, green, and blue pixels.

We find out which pixels are green by comparing, element-by-element, the middle (green, number 1) layer to the top

(red, zero) and bottom (blue, 2)

Now we just need to read in our data, which is a PNG image, and convert it into our matrix format:

We’ll also need a function to get an evenly spaced set of places between two endpoints:

2.5.6 Visualising green content

We should display the green content to check our work:

Image(map_png)

Image(map_at(*geolocate("New Delhi")))

from io import BytesIO # A library to convert between files and strings

import imageio # A library to deal with images, https://pypi.org/project/imageio/
import numpy as np # A library to deal with matrices

def is_green(pixels):
 threshold = 1.1
 greener_than_red = pixels[:, :, 1] > threshold * pixels[:, :, 0]
 greener_than_blue = pixels[:, :, 1] > threshold * pixels[:, :, 2]
 green = np.logical_and(greener_than_red, greener_than_blue)
 return green

400 × 400 × 3

def count_green_in_png(data):
 f = BytesIO(data)
 pixels = imageio.v2.imread(f) # Get our PNG image as a numpy array
 return np.sum(is_green(pixels))

print(count_green_in_png(map_at(*london_location)))

3674

def location_sequence(start, end, steps):
 lats = np.linspace(start[0], end[0], steps) # "Linearly spaced" data
 longs = np.linspace(start[1], end[1], steps)
 return np.vstack([lats, longs]).transpose()

location_sequence(geolocate("London"), geolocate("Cambridge"), 5)

array([[5.14893335e+01, -1.44055085e-01],
 [5.16683830e+01, -7.83753884e-02],
 [5.18474324e+01, -1.26956923e-02],
 [5.20264819e+01, 5.29840039e-02],
 [5.22055314e+01, 1.18663700e-01]])

2.5.7 Looping

We can loop over each element in our list of coordinates, and get a map for that place:

def show_green_in_png(data):
 pixels = imageio.imread(BytesIO(data)) # Get our PNG image as rows of pixels
 green = is_green(pixels)

 out = green[:, :, np.newaxis] * np.array([0, 1, 0])[np.newaxis, np.newaxis, :]

 buffer = BytesIO()
 imageio.imwrite(buffer, out, format="png")
 return buffer.getvalue()

Image(map_at(*london_location, satellite=True))

Image(show_green_in_png(map_at(*london_location, satellite=True)))

/tmp/ipykernel_5392/3094229650.py:2: DeprecationWarning: Starting with ImageIO v3
the behavior of this function will switch to that of iio.v3.imread. To keep the
current behavior (and make this warning disappear) use `import imageio.v2 as
imageio` or call `imageio.v2.imread` directly.
 pixels = imageio.imread(BytesIO(data)) # Get our PNG image as rows of pixels

KeyError Traceback (most recent call last)
File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/PIL/Image.py:3130, in fromarray(obj, mode)
 3129 try:
-> 3130 mode, rawmode = _fromarray_typemap[typekey]
 3131 except KeyError as e:

KeyError: ((1, 1, 3), '<i8')

The above exception was the direct cause of the following exception:

TypeError Traceback (most recent call last)
Cell In[23], line 1
----> 1 Image(show_green_in_png(map_at(*london_location, satellite=True)))

Cell In[21], line 8, in show_green_in_png(data)
 5 out = green[:, :, np.newaxis] * np.array([0, 1, 0])[np.newaxis,
np.newaxis, :]
 7 buffer = BytesIO()
----> 8 imageio.imwrite(buffer, out, format="png")
 9 return buffer.getvalue()

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/imageio/v2.py:397, in imwrite(uri, im, format, **kwargs)
 395 imopen_args["legacy_mode"] = True
 396 with imopen(uri, "wi", **imopen_args) as file:
--> 397 return file.write(im, **kwargs)

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/imageio/plugins/pillow.py:444, in PillowPlugin.write(self, ndimage, mode,
format, is_batch, **kwargs)
 441 ndimage = ndimage[None, ...]
 443 for frame in ndimage:
--> 444 pil_frame = Image.fromarray(frame, mode=mode)
 445 if "bits" in kwargs:
 446 pil_frame = pil_frame.quantize(colors=2 ** kwargs["bits"])

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/PIL/Image.py:3134, in fromarray(obj, mode)
 3132 typekey_shape, typestr = typekey
 3133 msg = f"Cannot handle this data type: {typekey_shape}, {typestr}"
-> 3134 raise TypeError(msg) from e
 3135 else:
 3136 rawmode = mode

TypeError: Cannot handle this data type: (1, 1, 3), <i8

for location in location_sequence(geolocate("London"), geolocate("Birmingham"),
4):
 display(Image(map_at(*location)))

So now we can count the green from London to Birmingham!

2.5.8 Plotting graphs

Let’s plot a graph.

[
 count_green_in_png(map_at(*location))
 for location in location_sequence(geolocate("London"),
geolocate("Birmingham"), 10)
]

[3258, 37141, 59293, 22398, 30123, 56351, 60224, 53067, 137132, 143993]

import matplotlib.pyplot as plt

plt.plot(
 [
 count_green_in_png(map_at(*location))
 for location in location_sequence(
 geolocate("London"), geolocate("Birmingham"), 10
)
]
)

From a research perspective, of course, this code needs a lot of work. But I hope the power of using programming is

clear.

2.5.9 Composing Program Elements

We built little pieces of useful code, to:

Find latitude and longitude of a place

Get a map at a given latitude and longitude

Decide whether a (red,green,blue) triple is mainly green

Decide whether each pixel is mainly green

Plot a new image showing the green places

Find evenly spaced points between two places

By putting these together, we can make a function which can plot this graph automatically for any two places:

And that’s it! We’ve used Python to analyse data from an internet API and visualise it in interesting ways.

2.6 Defining your own classes
Estimated time for this notebook: 20 minutes

2.6.1 User Defined Types

A class is a user-programmed Python type.

It is defined like:

Just as with other python types, you use the name of the type as a function to make a variable of that type:

In the jargon, we say that an object is an instance of a particular class.

__main__ is the name of the scope in which top-level code executes, where we’ve defined the class Room.

[<matplotlib.lines.Line2D at 0x10aedd2e0>]

def green_between(start, end, steps):
 return [
 count_green_in_png(map_at(*location))
 for location in location_sequence(geolocate(start), geolocate(end), steps)
]

plt.plot(green_between("New York", "Chicago", 20))

[<matplotlib.lines.Line2D at 0x10af8c070>]

class Room:
 pass

zero = int()
type(zero)

int

myroom = Room()
type(myroom)

__main__.Room

Once we have an object with a type of our own devising, we can add properties at will:

The most common use of a class is to allow us to group data into an object in a way that is easier to read and

understand than organising data into lists and dictionaries.

2.6.2 Methods

So far, our class doesn’t do much!

We define functions inside the definition of a class, in order to give them capabilities, just like the methods on

built-in types.

When we write methods, we always write the first function argument as self, to refer to the object instance itself,

the argument that goes “before the dot”.

This is just a convention for this variable name, not a keyword. You could call it something else if you wanted.

2.6.3 Constructors

Normally, though, we don’t want to add data to the class attributes on the fly like that. Instead, we define a

constructor that converts input data into an object.

Methods which begin and end with two underscores in their names fulfil special capabilities in Python, such as

constructors.

2.6.4 Object-oriented design

In building a computer system to model a problem, therefore, we often want to make:

classes for each kind of thing in our system

methods for each capability of that kind

properties (defined in a constructor) for each piece of information describing that kind

For example, the below program might describe our “Maze of Rooms” system:

We define a “Maze” class which can hold rooms:

myroom.name = "Living"

myroom.name

'Living'

myroom.capacity = 3
myroom.occupants = ["James", "Sue"]

class Room:
 def overfull(self):
 return len(self.occupants) > self.capacity

myroom = Room()
myroom.capacity = 3
myroom.occupants = ["James", "Sue"]

myroom.overfull()

False

myroom.occupants.append(["Clare"])

myroom.occupants.append(["Bob"])

myroom.overfull()

True

class Room:
 def __init__(self, name, exits, capacity, occupants=[]):
 self.name = name
 self.occupants = occupants # Note the default argument, occupants start
empty
 self.exits = exits
 self.capacity = capacity

 def overfull(self):
 return len(self.occupants) > self.capacity

living = Room("Living Room", {"north": "garden"}, 3)

living.capacity

3

And a “Room” class with exits, and people:

We define a “Person” class for room occupants:

And we use these classes to define our people, rooms, and their relationships:

class Maze:
 def __init__(self, name):
 self.name = name
 self.rooms = {}

 def add_room(self, room):
 room.maze = self # The Room needs to know
 # which Maze it is a part of
 self.rooms[room.name] = room

 def occupants(self):
 return [
 occupant
 for room in self.rooms.values()
 for occupant in room.occupants.values()
]

 def wander(self):
 """Move all the people in a random direction"""
 for occupant in self.occupants():
 occupant.wander()

 def describe(self):
 for room in self.rooms.values():
 room.describe()

 def step(self):
 self.describe()
 print("")
 self.wander()
 print("")

 def simulate(self, steps):
 for _ in range(steps):
 self.step()

class Room:
 def __init__(self, name, exits, capacity, maze=None):
 self.maze = maze
 self.name = name
 self.occupants = {} # Note the default argument, occupants start empty
 self.exits = exits # Should be a dictionary from directions to room names
 self.capacity = capacity

 def has_space(self):
 return len(self.occupants) < self.capacity

 def available_exits(self):
 return [
 exit
 for exit, target in self.exits.items()
 if self.maze.rooms[target].has_space()
]

 def random_valid_exit(self):
 import random

 if not self.available_exits():
 return None
 return random.choice(self.available_exits())

 def destination(self, exit):
 return self.maze.rooms[self.exits[exit]]

 def add_occupant(self, occupant):
 occupant.room = self # The person needs to know which room it is in
 self.occupants[occupant.name] = occupant

 def delete_occupant(self, occupant):
 del self.occupants[occupant.name]

 def describe(self):
 if self.occupants:
 print(f"{self.name}: " + " ".join(self.occupants.keys()))

class Person:
 def __init__(self, name, room=None):
 self.name = name

 def use(self, exit):
 self.room.delete_occupant(self)
 destination = self.room.destination(exit)
 destination.add_occupant(self)
 print(f"{self.name} goes {exit} to the {destination.name}")

 def wander(self):
 exit = self.room.random_valid_exit()
 if exit:
 self.use(exit)

james = Person("James")
sue = Person("Sue")
bob = Person("Bob")
clare = Person("Clare")

living = Room(
 "livingroom", {"outside": "garden", "upstairs": "bedroom", "north":
"kitchen"}, 2
)
kitchen = Room("kitchen", {"south": "livingroom"}, 1)
garden = Room("garden", {"inside": "livingroom"}, 3)
bedroom = Room("bedroom", {"jump": "garden", "downstairs": "livingroom"}, 1)

house = Maze("My House")

for room in [living, kitchen, garden, bedroom]:
 house.add_room(room)

living.add_occupant(james)

garden.add_occupant(sue)
garden.add_occupant(clare)

And we can run a “simulation” of our model:

2.6.5 Alternative object models

There are many choices for how to design programs to do this. Another choice would be to separately define exits as

a different class from rooms. This way, we can use arrays instead of dictionaries, but we have to first define all

our rooms, then define all our exits.

bedroom.add_occupant(bob)

house.simulate(3)

livingroom: James
garden: Sue Clare
bedroom: Bob

James goes outside to the garden
Sue goes inside to the livingroom
Clare goes inside to the livingroom
Bob goes jump to the garden

livingroom: Sue Clare
garden: James Bob

Sue goes north to the kitchen
Clare goes outside to the garden
James goes inside to the livingroom
Bob goes inside to the livingroom

livingroom: James Bob
kitchen: Sue
garden: Clare

James goes upstairs to the bedroom
Bob goes outside to the garden
Sue goes south to the livingroom
Clare goes inside to the livingroom

class Maze:
 def __init__(self, name):
 self.name = name
 self.rooms = []
 self.occupants = []

 def add_room(self, name, capacity):
 result = Room(name, capacity)
 self.rooms.append(result)
 return result

 def add_exit(self, name, source, target, reverse=None):
 source.add_exit(name, target)
 if reverse:
 target.add_exit(reverse, source)

 def add_occupant(self, name, room):
 self.occupants.append(Person(name, room))
 room.occupancy += 1

 def wander(self):
 "Move all the people in a random direction"
 for occupant in self.occupants:
 occupant.wander()

 def describe(self):
 for occupant in self.occupants:
 occupant.describe()

 def step(self):
 self.describe()
 print("")
 self.wander()
 print("")

 def simulate(self, steps):
 for _ in range(steps):
 self.step()

class Room:
 def __init__(self, name, capacity):
 self.name = name
 self.capacity = capacity
 self.occupancy = 0
 self.exits = []

 def has_space(self):
 return self.occupancy < self.capacity

 def available_exits(self):
 return [exit for exit in self.exits if exit.valid()]

 def random_valid_exit(self):
 import random

 if not self.available_exits():
 return None
 return random.choice(self.available_exits())

 def add_exit(self, name, target):
 self.exits.append(Exit(name, target))

class Person:
 def __init__(self, name, room=None):
 self.name = name
 self.room = room

 def use(self, exit):
 self.room.occupancy -= 1
 destination = exit.target
 destination.occupancy += 1
 self.room = destination
 print(f"{self.name} goes {exit.name} to the {destination.name}")

 def wander(self):
 exit = self.room.random_valid_exit()
 if exit:
 self.use(exit)

 def describe(self):
 print(f"{self.name} is in the {self.room.name}")

This is a huge topic, about which many books have been written. The differences between these two designs are

important, and will have long-term consequences for the project. That is the how we start to think about software

engineering, as opposed to learning to program, and is an important part of this course.

2.7 Data analysis with classes

Estimated time to complete this notebook: 10 minutes

Earlier, we wrote some code to measure the amount of green content on satellite images. Now, we’re going to convert

this into a “Greengraph” class, and save it as a module.

⚠ It is generally a better idea to create files in an editor or integrated development environment (IDE) rather

than through the notebook! ⚠

2.7.1 Classes for Greengraph

Note that a line like from .map import Map will import the definition of Map from the file map.py in the current

directory.

class Exit:
 def __init__(self, name, target):
 self.name = name
 self.target = target

 def valid(self):
 return self.target.has_space()

house = Maze("My New House")

living = house.add_room("livingroom", 2)
bed = house.add_room("bedroom", 1)
garden = house.add_room("garden", 3)
kitchen = house.add_room("kitchen", 1)

house.add_exit("north", living, kitchen, "south")

house.add_exit("upstairs", living, bed, "downstairs")

house.add_exit("outside", living, garden, "inside")

house.add_exit("jump", bed, garden)

house.add_occupant("James", living)
house.add_occupant("Sue", garden)
house.add_occupant("Bob", bed)
house.add_occupant("Clare", garden)

house.simulate(3)

James is in the livingroom
Sue is in the garden
Bob is in the bedroom
Clare is in the garden

James goes outside to the garden
Sue goes inside to the livingroom
Bob goes downstairs to the livingroom

James is in the garden
Sue is in the livingroom
Bob is in the livingroom
Clare is in the garden

Sue goes outside to the garden
Bob goes north to the kitchen
Clare goes inside to the livingroom

James is in the garden
Sue is in the garden
Bob is in the kitchen
Clare is in the livingroom

James goes inside to the livingroom
Clare goes outside to the garden

%%bash
mkdir -p greengraph # Create the folder for the module (on mac or linux)

%%writefile greengraph/graph.py
import numpy as np
import geopy
from .map import Map

class Greengraph:
 def __init__(self, start, end):
 self.start = start
 self.end = end
 self.geocoder = geopy.geocoders.Nominatim(user_agent="rsd-course")

 def geolocate(self, place):
 return self.geocoder.geocode(place, exactly_one=False)[0][1]

 def location_sequence(self, start, end, steps):
 lats = np.linspace(start[0], end[0], steps)
 longs = np.linspace(start[1], end[1], steps)
 return np.vstack([lats, longs]).transpose()

 def green_between(self, steps):
 return [
 Map(*location).count_green()
 for location in self.location_sequence(
 self.geolocate(self.start), self.geolocate(self.end), steps
)
]

Overwriting greengraph/graph.py

2.7.2 Invoking our code and making a plot

2.7 Classroom Exercises

List of exercises and estimated completion times

2a - Occupancy Dictionary 5 minutes

2b - Occupancy Dictionary Extension 5 minutes

2c - Functions 15 minutes

2d - Using Libraries 15 minutes

2e - Longitude and Latitude 15 minutes

2f - Defining Classes 45 minutes

2g - Longitude and Latitude Extension 10 minutes

Exercise 2a Occupancy Dictionary

Relevant Sections: 2.0.2

%%writefile greengraph/map.py

import numpy as np
from io import BytesIO
import imageio as img
import requests

class Map:
 def __init__(
 self, lat, long, satellite=True, zoom=10, size=(400, 400), sensor=False
):
 base = "https://static-maps.yandex.ru/1.x/?"

 params = dict(
 z=zoom,
 size=str(size[0]) + "," + str(size[1]),
 ll=str(long) + "," + str(lat),
 l="sat" if satellite else "map",
 lang="en_US",
)

 self.image = requests.get(
 base, params=params
).content # Fetch our PNG image data
 content = BytesIO(self.image)
 self.pixels = img.imread(content) # Parse our PNG image as a numpy array

 def green(self, threshold):
 # Use NumPy to build an element-by-element logical array
 greener_than_red = self.pixels[:, :, 1] > threshold * self.pixels[:, :, 0]
 greener_than_blue = self.pixels[:, :, 1] > threshold * self.pixels[:, :,
2]
 green = np.logical_and(greener_than_red, greener_than_blue)
 return green

 def count_green(self, threshold=1.1):
 return np.sum(self.green(threshold))

 def show_green(data, threshold=1.1):
 green = self.green(threshold)
 out = green[:, :, np.newaxis] * array([0, 1, 0])[np.newaxis, np.newaxis,
:]
 buffer = BytesIO()
 result = img.imwrite(buffer, out, format="png")
 return buffer.getvalue()

Overwriting greengraph/map.py

%%writefile greengraph/__init__.py
from .graph import Greengraph

Overwriting greengraph/__init__.py

%matplotlib inline
from greengraph import Greengraph
from matplotlib import pyplot as plt

mygraph = Greengraph("New York", "Chicago")
data = mygraph.green_between(20)

plt.plot(data)

[<matplotlib.lines.Line2D at 0x7fedf73f42e0>]

In one of the module 1 exercises you designed a data structure to represent a maze using dictionaries and lists.

The answer to your initial maze model output might have looked similar to this:

Take this maze data structure.

First write an expression to print out a new dictionary, which holds, for each room, that room’s capacity.

The output should look like:

Exercise 2b Occupancy Dictionary Extension

Relevant Sections: 2.0.2 and 2.0.4

Now, write a program to print out a new dictionary, which gives,for each room’s name, the number of people in it.

Don’t add in a zero value in the dictionary for empty rooms.

The output should look similar to:

Exercise 2c Functions

Relevant Sections: 2.1.1, 2.1.8, (2.0.2)

Write a function that will take the following input and return a list containing only even integers

The call to your function could look something like this:

or

Exercise 2d Using Libraries

Relevant Sections: 2.2.1

Investigate the similarities and differences between the responses (if any) from the numpy, scipy, statistics and math

modules to the following calculations:

 where n is positive

 where n is negative

The mean of the numbers 1 to 9 (inclusive)

For those interested, each of these libraries has their own documentation. NumPy, SciPy, statistics and math

Exercise 2e Longitude and Latitude

Relevant Sections: 2.4.2, 2.4.1

In section 2.4.2 a map of an area collected from the internet was displayed.

Write a function that will accept user-specified latitude, and longitude and return the response. Then use IPython

to display the image as in 2.5.2

The answer could look something like:

some interesting coordinates are:

Exercise 2f Defining Classes

Relevant Sections: 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5

In section 2.6.4 and 2.6.5 two examples of the maze model were given.

house = {
 "living": {
 "exits": {"north": "kitchen", "outside": "garden", "upstairs": "bedroom"},
 "people": ["James"],
 "capacity": 2,
 },
 "kitchen": {"exits": {"south": "living"}, "people": [], "capacity": 1},
 "garden": {"exits": {"inside": "living"}, "people": ["Sue"], "capacity": 3},
 "bedroom": {
 "exits": {"downstairs": "living", "jump": "garden"},
 "people": [],
 "capacity": 1,
 },
}

{"bedroom": 1, "garden": 3, "kitchen": 1, "living": 2}

{"garden": 1, "living": 1}

(1, 1.99999999999, "three", 20/5, 5, 6, "sju", "8", 9, 10., 11, 12)

my_function(1, 1.99999999999, "three", 20/5, 5, 6, "sju", "8", 9, 10., 11, 12)

my_function(*inputs)

π

log10(n)

log10(n)

function_response = my_function(lat, lon)
Image(function_response)

coordinates_as_lat_lon = [
 (36.2110, -115.2669),
 (53.0066, 7.1920),
 (41.3908, 2.1631),
 (40.7822, -73.9653),
 (25.8380, 50.6050),
]

https://numpy.org/doc/stable/user/whatisnumpy.html
https://docs.scipy.org/doc/scipy/tutorial/general.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/math.html

Compare the two solutions. Discuss with a partner which you like better, and why.

Then, starting from scratch, design your own. What choices did you make that are different?

Exercise 2g Longitude and Latitude Extension

Relevant Sections: 2.3.7

Use the function you wrote in 2e above as the basis for a new function that will receive the longitude, latitude,

zoom level and a name to save the file as. Use this function to save a map image file somewhere on your local disk.

Zoom between 14 and 16 work well for the example coordinates

3. Research Data in Python
Fields and records

Structured data: JSON and YAML

Numpy: Efficient vector and matrix operations

Matplotlib: Plotting and animations

Contents

3.0 Scientific Python (5 minutes)

3.1 Field and Record Data (20 minutes)

3.2 Structured Data (15 minutes)

3.3 Plotting with Matplotlib (25 minutes)

3.4 NumPy (20 minutes)

3.5 Advanced NumPy (20 minutes)

3.6 The Boids (45 minutes)

Total time: 2 hrs 30 minutes

Exercises

Classroom exercises are grouped together at the end of the module: 3.7 Classroom Exercises. Each exercise is

labelled with any sections whose contents are relevant. We recommend that instructors schedule the exercises to be

done in groups during breaks in the taught content. However, it is important that participants also have some time

away from their screens. Exercises can also be left as self-paced homework assignments if preferred.

3.0 Scientific Python

Estimated time to complete this notebook: 5 minutes

Why is Python so popular for research work?

Historically, FORTRAN was the most popular “language of technical computing”. Later, MATLAB was created with strong

built-in support for efficient numerical analysis with matrices (the mat in MATLAB is for Matrix, not Maths), and

plotting.

Early Python users developed three critical libraries, to match the power of MATLAB for scientific work:

Matplotlib, the plotting library created by John D. Hunter

NumPy, a fast matrix maths library created by Travis Oliphant

IPython, the precursor of the notebook, created by Fernando Perez

By combining a plotting library, a matrix maths library, and an easy-to-use interface allowing live plotting

commands in a persistent environment, the powerful capabilities of MATLAB were matched by a free and open

toolchain.

Further tools such as pandas and scipy are built on, extend, or utilise these libraries. In this module we will use

these libraries to deal with data of the type that might be used in a research project.

3.1 Field and Record Data
Estimated time to complete this notebook: 20 minutes

3.1.1 Separated Value Files

Let’s go back to the sunspots example from the previous module. We had downloaded some semicolon separated data and

decided it was better to use a library than to write our own parser.

We want to work programmatically with Separated Value files.

These are files which have:

Each record on a line

Each record has multiple fields

Fields are separated by some separator

Typical separators are the space, tab, comma, and semicolon separated values files, e.g.:

Space separated value (e.g. field1 "field two" field3)

Comma separated value (e.g. field1, another field, "wow, another field")

Comma-separated-value is abbreviated CSV, and tab separated value TSV.

import requests

spots = requests.get("http://www.sidc.be/silso/INFO/snmtotcsv.php", timeout=60)
spots.text.split("\n")[0]

'1749;01;1749.042; 96.7; -1.0; -1;1'

https://en.wikipedia.org/wiki/John_D._Hunter
https://www.anaconda.com/people/travis-oliphant
http://fperez.org/

CSV is also used to refer to all the different sub-kinds of separated value files, i.e. some people use CSV to

refer to tab, space and semicolon separated files.

CSV is not a particularly great data format, because it forces your data model to be a list of lists. Richer file

formats describe “serialisations” for dictionaries and for deeper-than-two nested list structures as well.

Nevertheless, CSV files are very popular because you can always export spreadsheets as CSV files, (each cell is a

field, each row is a record)

3.1.2 CSV variants

Some CSV formats define a comment character, so that rows beginning with, e.g., a #, are not treated as data, but

give a human comment.

Some CSV formats define a three-deep list structure, where a double-newline separates records into blocks.

Some CSV formats assume that the first line defines the names of the fields, e.g.:

3.1.3 Python CSV readers

The Python standard library has a csv module. However, it’s less powerful than the CSV capabilities in other

libraries such as numpy. Here we will use pandas which is built on top of numpy.

0 1 2 3 4 5 6

0 1749 1 1749.042 96.7 -1.0 -1 1

1 1749 2 1749.123 104.3 -1.0 -1 1

2 1749 3 1749.204 116.7 -1.0 -1 1

3 1749 4 1749.288 92.8 -1.0 -1 1

4 1749 5 1749.371 141.7 -1.0 -1 1

Pandas read_csv is a powerful CSV reader tool. A path to the data is given, this can be something on a local

machine, or in this case the path is a url.

We used the sep optional argument to specify the delimeter. The optional argument header specifies if the data

contains headers, and if so; the row numbers to use as column names.

The data is loaded into a DataFrame. The head method shows us the first 5 entries in the dataframe. The tail method

shows us the last 5 entries.

0 1 2 3 4 5 6

3300 2024 1 2024.042 123.0 18.7 783 0

3301 2024 2 2024.124 124.7 21.8 700 0

3302 2024 3 2024.206 104.9 17.0 934 0

3303 2024 4 2024.288 136.5 22.3 973 0

3304 2024 5 2024.373 171.7 23.8 1058 0

We can now plot the “Sunspot cycle”:

The plot command accepted an series of ‘X’ values and an series of ‘Y’ values, identified by their column number in

this case, as the dataframe does not have (useful) column headers yet.

name, age
James, 39
Will, 2

import pandas as pd

df = pd.read_csv("http://www.sidc.be/silso/INFO/snmtotcsv.php", sep=";",
header=None)
df.head()

df.tail()

df[3][0]

96.7

df.plot(x=2, y=3)

<Axes: xlabel='2'>

https://numpy.org/
https://pandas.pydata.org/

3.1.4 Naming Columns

As it happens, the columns definitions can be found on the source website (http://www.sidc.be/silso/infosnmtot)

CSV

Filename: SN_m_tot_V2.0.csv Format: Comma Separated values (adapted for import in spreadsheets) The

separator is the semicolon ‘;’.

Contents:

Column 1-2: Gregorian calendar date

Year

Month

Column 3: Date in fraction of year.

Column 4: Monthly mean total sunspot number.

Column 5: Monthly mean standard deviation of the input sunspot numbers.

Column 6: Number of observations used to compute the monthly mean total sunspot number.

Column 7: Definitive/provisional marker. ‘1’ indicates that the value is definitive. ‘0’ indicates

that the value is still provisional.

We can actually specify this to the formatter:

year month date mean deviation observations definitive

0 1749 1 1749.042 96.7 -1.0 -1 1

1 1749 2 1749.123 104.3 -1.0 -1 1

2 1749 3 1749.204 116.7 -1.0 -1 1

3 1749 4 1749.288 92.8 -1.0 -1 1

4 1749 5 1749.371 141.7 -1.0 -1 1

Note: The plot method used for the DataFrame is just a wrapper around the matplotlib function plt.plot():

3.1.5 Typed Fields

It’s also often useful to check, and if necessary specify, the datatype of each field.

In this case the data types seem sensible, however if we wanted to convert the year into a floating point number

instead, we could via:

df_w_names = pd.read_csv(
 "http://www.sidc.be/silso/INFO/snmtotcsv.php",
 sep=";",
 header=None,
 names=["year", "month", "date", "mean", "deviation", "observations",
"definitive"],
)
df_w_names.head()

df_w_names.plot(x="date", y="mean")

<Axes: xlabel='date'>

df_w_names.dtypes # Check the data types of all columns in the DataFrame

year int64
month int64
date float64
mean float64
deviation float64
observations int64
definitive int64
dtype: object

df_w_names["year"] = df_w_names["year"].astype("float64")
df_w_names.dtypes

year float64
month int64
date float64
mean float64
deviation float64
observations int64
definitive int64
dtype: object

df_w_names.head()

http://www.sidc.be/silso/infosnmtot

year month date mean deviation observations definitive

0 1749.0 1 1749.042 96.7 -1.0 -1 1

1 1749.0 2 1749.123 104.3 -1.0 -1 1

2 1749.0 3 1749.204 116.7 -1.0 -1 1

3 1749.0 4 1749.288 92.8 -1.0 -1 1

4 1749.0 5 1749.371 141.7 -1.0 -1 1

3.1.6 Filtering data

Sometimes it is necessary to filter data, for example to only see the sunspots for the year 2018 you would use:

year month date mean deviation observations definitive

3228 2018.0 1 2018.042 6.8 1.5 701 1

3229 2018.0 2 2018.122 10.7 1.1 917 1

3230 2018.0 3 2018.204 2.5 0.4 1081 1

3231 2018.0 4 2018.286 8.9 1.3 996 1

3232 2018.0 5 2018.371 13.1 1.6 1234 1

3233 2018.0 6 2018.453 15.6 1.6 1070 1

3234 2018.0 7 2018.538 1.6 0.6 1438 1

3235 2018.0 8 2018.623 8.7 1.0 1297 1

3236 2018.0 9 2018.705 3.3 0.6 1223 1

3237 2018.0 10 2018.790 4.9 1.2 1097 1

3238 2018.0 11 2018.873 4.9 0.6 771 1

3239 2018.0 12 2018.958 3.1 0.5 786 1

Even though we used

to show us the first 20 results from the dataframe, only 12 are shown as there are only 12 months in a year

If we wanted all data from 1997 to 1999 we could via:

year month date mean deviation observations definitive

2976 1997.0 1 1997.042 7.4 3.2 497 1

2977 1997.0 2 1997.123 11.0 2.9 545 1

2978 1997.0 3 1997.204 12.1 2.4 627 1

2979 1997.0 4 1997.288 23.0 3.3 663 1

2980 1997.0 5 1997.371 25.4 2.8 716 1

year month date mean deviation observations definitive

3007 1999.0 8 1999.623 142.3 12.9 649 1

3008 1999.0 9 1999.707 106.3 6.5 624 1

3009 1999.0 10 1999.790 168.7 10.4 531 1

3010 1999.0 11 1999.874 188.3 12.3 406 1

3011 1999.0 12 1999.958 116.8 9.3 404 1

3.2 Structured Data

Estimated time to complete this notebook: 15 minutes

3.2.1 Structured data

CSV files can only model data where each record has several fields, and each field is a simple datatype, a string

or number.

We often want to store data which is more complicated than this, with nested structures of lists and dictionaries.

Structured data formats like JSON, YAML, and XML are designed for this.

3.2.2 JSON

JSON is a very common open-standard data format that is used to store structured data in a human-readable way.

This allows us to represent data which is combinations of lists and dictionaries as a text file which looks a bit

like a Javascript (or Python) data literal.

Any nested group of dictionaries and lists can be saved:

Saving and loading data is really easy.

df_twenty_eighteen = df_w_names[(df_w_names["year"] == 2018)]
df_twenty_eighteen.head(20)

df_twenty_eighteen.head(20)

df_nineties = df_w_names[(df_w_names["year"] >= 1997) & (df_w_names["year"] <
2000)]

df_nineties.head()

df_nineties.tail()

import json

https://en.wikipedia.org/wiki/JSON

To save a dictionary as a json file:

And read in the data back in from the file

This is a very nice solution for loading and saving Python data structures.

It’s a very common way of transferring data on the internet, and of saving datasets to disk.

There’s good support in most languages, so it’s a nice inter-language file interchange format.

3.2.3 YAML

YAML is a very similar data format to JSON, with some nice additions:

You don’t need to quote strings if they don’t have funny characters in

You can have comment lines, beginning with a #

You can write dictionaries without the curly brackets: it just notices the colons.

You can write lists like this:

Supplementary Materials: yaml.safe_load is preferred over yaml.load to avoid executing arbitrary code in untrusted

files. See here for details.

YAML is a popular format for ad-hoc data files, but the library doesn’t ship with default Python (though it is part

of Anaconda and Canopy), so some people still prefer JSON for its universality.

Because YAML gives the option of serialising a list either as newlines with dashes, or with square brackets, you

can control this choice:

default_flow_style=False uses a “block style” (rather than an “inline” or “flow style”) to delineate data structures.

See the YAML docs for more details.

In addition to saving a yaml file via cell magics, they can also be written:

3.2.4 JSON to YAML

And of course the JSON formatted data can be written as a yaml file, and vice versa. Here we are taking the data we

read in for the JSON example and saving it as a yaml file.

You can compare the original json file to the json-data-saved-as-yaml either when loaded….

example_dictionary = {"somekey": ["a list", "with values", "for json"]}

with open("myfile.json", "w") as f:
 json.dump(example_dictionary, f)

with open("myfile.json", "r") as f:
 my_json_data = json.load(f)

my_json_data

{'somekey': ['a list', 'with values', 'for json']}

my_json_data["somekey"]

['a list', 'with values', 'for json']

%%writefile myfile.yaml
somekey:
 - a list # Look, this is a list
 - with values
 - for yaml

Overwriting myfile.yaml

import yaml # This may need installed as pyyaml

with open("myfile.yaml") as myfile:
 my_yaml_data = yaml.safe_load(myfile)
print(my_yaml_data)

{'somekey': ['a list', 'with values', 'for yaml']}

print(yaml.safe_dump(my_yaml_data, default_flow_style=True))

{somekey: [a list, with values, for yaml]}

print(yaml.safe_dump(my_yaml_data, default_flow_style=False))

somekey:
- a list
- with values
- for yaml

with open("myotherfile.yml", "w") as f:
 yaml.safe_dump(my_yaml_data, f, default_flow_style=False)

with open("json_to_yaml.yaml", "w") as f:
 yaml.safe_dump(my_json_data, f, default_flow_style=False)

The original json file
with open("myfile.json", "r") as f:
 mydataasstring = f.read()
print(json.loads(mydataasstring))

https://en.wikipedia.org/wiki/YAML
https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation
http://yaml.org/spec/1.2/spec.html

To how they appear in their respective file formats

3.2.5 XML

Supplementary material: XML is another popular choice when saving nested data structures. It’s very careful, but

verbose. If your field uses XML data, you’ll need to learn a python XML parser (there are a few), and about how XML

works.

3.3 Plotting with Matplotlib

Estimated time to complete this notebook: 25 minutes

3.3.1 Importing Matplotlib

We import the pyplot object from Matplotlib, which provides us with an interface for making figures. We usually

abbreviate it.

3.3.2 Notebook magics

When we write:

We tell the Jupyter notebook to show figures we generate alongside the code that created it, rather than in a

separate window. Lines beginning with a single percent are not python code: they control how the notebook deals

with python code.

Lines beginning with two percent signs are “cell magics”, that tell Jupyter notebook how to interpret the

particular cell; we’ve seen %%writefile and %%bash for example.

3.3.3 A basic plot

When we write:

The plot command returns a figure, just like the return value of any function. The notebook then displays this.

To add a title, axis labels etc, we need to get that figure object, and manipulate it. For convenience, matplotlib

allows us to do this just by issuing commands to change the “current figure”:

{'somekey': ['a list', 'with values', 'for json']}

The data from the json file saved as a yaml then read in
with open("json_to_yaml.yaml") as f:
 my_json_yaml_data = yaml.safe_load(f)
print(my_json_yaml_data)

{'somekey': ['a list', 'with values', 'for json']}

%%bash
#%%cmd (windows)
cat 'myfile.json' # The original json file

{"somekey": ["a list", "with values", "for json"]}

%%bash
#%%cmd (windows)
cat 'json_to_yaml.yaml' # The data from the json file saved as a yaml

somekey:

- a list

- with values

- for json

from matplotlib import pyplot as plt

%matplotlib inline

from math import cos, pi, sin

myfig = plt.plot([sin(pi * x / 100.0) for x in range(100)])

plt.plot([sin(pi * x / 100.0) for x in range(100)])
plt.title("Hello")

http://www.w3schools.com/xml/
https://docs.python.org/3/library/xml.etree.elementtree.html

But this requires us to keep all our commands together in a single cell, and makes use of a “global” single

“current plot”, which, while convenient for quick exploratory sketches, is a bit cumbersome. If we want to produce

publication-quality plots from our notebook, matplotlib, defines some types we can use to treat individual figures

as variables, and manipulate these.

3.3.4 Figures and Axes

We often want multiple graphs in a single figure (e.g. for figures which display a matrix of graphs of different

variables for comparison).

So Matplotlib divides a figure object up into axes: each pair of axes is one ‘subplot’. To make a boring figure with

just one pair of axes, however, we can just ask for a default new figure, with brand new axes. The relevant

function returns a (figure, axis) pair, which we can deal out with parallel assignment.

Once we have some axes, we can plot a graph on them:

We can add a title to a pair of axes:

Now we need to actually display the figure. As always with the notebook, if we make a variable be returned by the

last line of a code cell, it gets displayed:

Text(0.5, 1.0, 'Hello')

sine_graph, sine_graph_axes = plt.subplots()

sine_graph_axes.plot([sin(pi * x / 100.0) for x in range(100)], label="sin(x)")

[<matplotlib.lines.Line2D at 0x7f2652173940>]

sine_graph_axes.set_title("My graph")

Text(0.5, 1.0, 'My graph')

sine_graph_axes.set_ylabel("f(x)")

Text(4.444444444444445, 0.5, 'f(x)')

sine_graph_axes.set_xlabel("100 x")

Text(0.5, 4.444444444444445, '100 x')

sine_graph

We can add another curve:

A legend will help us distinguish the curves:

3.3.5 Saving figures

We must be able to save figures to disk, in order to use them in papers. This is really easy:

In order to be able to check that it worked, we need to know how to display an arbitrary image in the notebook.

The programmatic way is like this:

sine_graph_axes.plot([cos(pi * x / 100.0) for x in range(100)], label="cos(x)")

[<matplotlib.lines.Line2D at 0x7f265210e610>]

sine_graph

sine_graph_axes.legend()

<matplotlib.legend.Legend at 0x7f26889eea30>

sine_graph

sine_graph.savefig("my_graph.png")

Use the notebook's own library for manipulating itself.
from IPython.display import Image

Image(filename="my_graph.png")

3.3.6 Subplots

We might have wanted the and graphs on separate axes:sin cos

double_graph = plt.figure()

<Figure size 640x480 with 0 Axes>

sin_axes = double_graph.add_subplot(2, 1, 1) # 2 rows, 1 column, 1st subplot

cos_axes = double_graph.add_subplot(2, 1, 2)

double_graph

sin_axes.plot([sin(pi * x / 100.0) for x in range(100)])

[<matplotlib.lines.Line2D at 0x7f2652006cd0>]

sin_axes.set_ylabel("sin(x)")

Text(4.444444444444445, 0.5, 'sin(x)')

cos_axes.plot([cos(pi * x / 100.0) for x in range(100)])

[<matplotlib.lines.Line2D at 0x7f26521144f0>]

cos_axes.set_ylabel("cos(x)")

Text(4.444444444444445, 0.5, 'cos(x)')

cos_axes.set_xlabel("100 x")

Text(0.5, 4.444444444444445, '100 x')

double_graph

3.3.7 Versus plots

When we specify a single list to plot, the x-values are just the array index number. We usually want to plot

something more meaningful:

3.3.8 Sunspot Data

We can incorporate what we have learned in the sunspots example to produce graphs of the data.

double_graph = plt.figure()
sin_axes = double_graph.add_subplot(2, 1, 1)
cos_axes = double_graph.add_subplot(2, 1, 2)
cos_axes.set_ylabel("cos(x)")
sin_axes.set_ylabel("sin(x)")
cos_axes.set_xlabel("x")

Text(0.5, 0, 'x')

sin_axes.plot(
 [x / 100.0 for x in range(100)], [sin(pi * x / 100.0) for x in range(100)]
)
cos_axes.plot(
 [x / 100.0 for x in range(100)], [cos(pi * x / 100.0) for x in range(100)]
)

[<matplotlib.lines.Line2D at 0x7f2651f01a00>]

double_graph

import pandas as pd

df = pd.read_csv(
 "http://www.sidc.be/silso/INFO/snmtotcsv.php",
 sep=";",
 header=None,
 names=["year", "month", "date", "mean", "deviation", "observations",
"definitive"],
)
df.head()

year month date mean deviation observations definitive

0 1749 1 1749.042 96.7 -1.0 -1 1

1 1749 2 1749.123 104.3 -1.0 -1 1

2 1749 3 1749.204 116.7 -1.0 -1 1

3 1749 4 1749.288 92.8 -1.0 -1 1

4 1749 5 1749.371 141.7 -1.0 -1 1

We can plot all the data in the dataframe separately, but that isn’t always useful!

Let’s produce some more meaningful and useful visualisations by accessing the dataframe directly.

We start by discarding any rows with an invalid (negative) standard deviation.

Next we use the dataframe to construct some useful lists.

df.plot(subplots=True)

array([<Axes: >, <Axes: >, <Axes: >, <Axes: >, <Axes: >, <Axes: >,
 <Axes: >], dtype=object)

df = df[df["deviation"] > 0]

deviation = df["deviation"].tolist() # Get the dataframe column (series) as a
list
observations = df["observations"].tolist()
mean = df["mean"].tolist()
date = df["date"].tolist()

fig = plt.figure(
 figsize=(15, 10)
) # Set the width of the figure to be 15 inches, and the height to be 5 inches

ax1 = fig.add_subplot(2, 2, 1) # 2 rows, 2 columns, 1st subplot
ax1.errorbar(
 df["date"], # Date on the x axis
 df["mean"], # Mean on the y axis
 yerr=df["deviation"], # Use the deviation for the error bars
 color="orange", # Plot the sunspot (mean) data in orange
 ecolor="black",
) # Show the error bars in black
ax1.set_xlabel("Date")
ax1.set_ylabel("Mean")
ax1.set_title("From Dataframe")

ax2 = fig.add_subplot(2, 2, 2) # 2 rows, 2 columns, 2nd subplot
ax2.scatter(df["date"], df["observations"], color="grey", marker="+")
ax2.set_xlabel("Date")
ax2.set_ylabel("Number of Observations")
ax2.set_title("From Dataframe")

ax3 = fig.add_subplot(2, 2, 3) # 2 rows, 2 columns, 3rd subplot
ax3.errorbar(date, mean, yerr=deviation, color="pink", ecolor="black")
ax3.set_xlabel("Date")
ax3.set_ylabel("Mean")
ax3.set_title("From List")

ax4 = fig.add_subplot(2, 2, 4) # 2 rows, 2 columns, 4th subplot
ax4.scatter(date, observations, color="red", marker="o")
ax4.set_xlabel("Date")
ax4.set_ylabel("Number of Observations")
ax4.set_title("From List")

In this example we are plotting columns from the pandas DataFrame (series), and from lists to show this method works

for both. numpy arrays can also be used.

3.3.9 Learning More

There’s so much more to learn about matplotlib: pie charts, bar charts, heat maps, 3-d plotting, animated plots, and

so on. You can learn all this via the Matplotlib Website. You should try to get comfortable with all this, so

please use some time in class, or at home, to work your way through a bunch of the examples.

3.4 NumPy

Estimated time to complete this notebook: 20 minutes

3.4.1 Limitations of Python Lists

The normal Python List is just one dimensional. To make a matrix, we have to nest Python lists:

Applying an operation to every element is a pain:

Common useful operations like transposing a matrix or reshaping a 10 by 10 matrix into a 20 by 5 matrix are not

easy to code in raw Python lists.

3.4.2 The NumPy array

NumPy’s array type represents a multidimensional matrix

The NumPy array seems at first to be just like a list:

Text(0.5, 1.0, 'From List')

x = [list(range(5)) for N in range(5)]

x

[[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]]

x[2][2]

2

x + 5

TypeError Traceback (most recent call last)
Cell In[4], line 1
----> 1 x + 5

TypeError: can only concatenate list (not "int") to list

[[elem + 5 for elem in row] for row in x]

[[5, 6, 7, 8, 9],
 [5, 6, 7, 8, 9],
 [5, 6, 7, 8, 9],
 [5, 6, 7, 8, 9],
 [5, 6, 7, 8, 9]]

Mi,j,k...n

import numpy as np

my_array = np.array(range(5))

my_array

array([0, 1, 2, 3, 4])

my_array[2]

2

https://matplotlib.org/stable/
https://matplotlib.org/stable/gallery/index.html

We can also see our first weakness of NumPy arrays versus Python lists:

For NumPy arrays, you typically don’t change the data size once you’ve defined your array, whereas for Python

lists, you can do this efficiently. However, you get back lots of goodies in return…

3.4.3 Elementwise Operations

But most operations can be applied element-wise automatically!

These “vectorized” operations are very fast: (see here for more information on the %%timeit magic)

3.4.4 Arange and linspace

NumPy has two easy methods for defining floating-point evenly spaced arrays:

Note that using non-integer step size does not work with Python lists:

Similarly, we can quickly an evenly spaced range of a known size (e.g. for graph plotting):

NumPy comes with ‘vectorised’ versions of common functions which work element-by-element when applied to arrays:

for element in my_array:
 print("Hello" * element)

Hello
HelloHello
HelloHelloHello
HelloHelloHelloHello

my_array.append(4)

AttributeError Traceback (most recent call last)
Cell In[10], line 1
----> 1 my_array.append(4)

AttributeError: 'numpy.ndarray' object has no attribute 'append'

my_array + 2

array([2, 3, 4, 5, 6])

import numpy as np

big_list = range(10000)
big_array = np.arange(10000)

%%timeit
[x**2 for x in big_list]

2.75 ms ± 116 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
big_array**2

3.06 µs ± 20.8 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

x = np.arange(0, 10, 0.1) # Start, stop, step size

y = list(range(0, 10, 0.1))

TypeError Traceback (most recent call last)
Cell In[16], line 1
----> 1 y = list(range(0, 10, 0.1))

TypeError: 'float' object cannot be interpreted as an integer

import math

values = np.linspace(0, math.pi, 100) # Start, stop, number of steps

values

array([0. , 0.03173326, 0.06346652, 0.09519978, 0.12693304,
 0.1586663 , 0.19039955, 0.22213281, 0.25386607, 0.28559933,
 0.31733259, 0.34906585, 0.38079911, 0.41253237, 0.44426563,
 0.47599889, 0.50773215, 0.53946541, 0.57119866, 0.60293192,
 0.63466518, 0.66639844, 0.6981317 , 0.72986496, 0.76159822,
 0.79333148, 0.82506474, 0.856798 , 0.88853126, 0.92026451,
 0.95199777, 0.98373103, 1.01546429, 1.04719755, 1.07893081,
 1.11066407, 1.14239733, 1.17413059, 1.20586385, 1.23759711,
 1.26933037, 1.30106362, 1.33279688, 1.36453014, 1.3962634 ,
 1.42799666, 1.45972992, 1.49146318, 1.52319644, 1.5549297 ,
 1.58666296, 1.61839622, 1.65012947, 1.68186273, 1.71359599,
 1.74532925, 1.77706251, 1.80879577, 1.84052903, 1.87226229,
 1.90399555, 1.93572881, 1.96746207, 1.99919533, 2.03092858,
 2.06266184, 2.0943951 , 2.12612836, 2.15786162, 2.18959488,
 2.22132814, 2.2530614 , 2.28479466, 2.31652792, 2.34826118,
 2.37999443, 2.41172769, 2.44346095, 2.47519421, 2.50692747,
 2.53866073, 2.57039399, 2.60212725, 2.63386051, 2.66559377,
 2.69732703, 2.72906028, 2.76079354, 2.7925268 , 2.82426006,
 2.85599332, 2.88772658, 2.91945984, 2.9511931 , 2.98292636,
 3.01465962, 3.04639288, 3.07812614, 3.10985939, 3.14159265])

from matplotlib import pyplot as plt

plt.plot(values, np.sin(values))

https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

So we don’t have to use awkward list comprehensions when using these.

3.4.5 Multi-Dimensional Arrays

NumPy’s true power comes from multi-dimensional arrays:

Unlike a list-of-lists in Python, we can reshape arrays:

And index multiple columns at once:

Including selecting on inner axes while taking all from the outermost:

And subselecting ranges:

And transpose arrays:

[<matplotlib.lines.Line2D at 0x7ff7d0adf8e0>]

np.zeros([3, 4, 2]) # 3 arrays with 4 rows and 2 columns each

array([[[0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]],

 [[0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]],

 [[0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]]])

x = np.array(range(40))
x

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 34, 35, 36, 37, 38, 39])

y = x.reshape([4, 5, 2]) # 4 Arrays - 5 Rows - 2 Columns
y

array([[[0, 1],
 [2, 3],
 [4, 5],
 [6, 7],
 [8, 9]],

 [[10, 11],
 [12, 13],
 [14, 15],
 [16, 17],
 [18, 19]],

 [[20, 21],
 [22, 23],
 [24, 25],
 [26, 27],
 [28, 29]],

 [[30, 31],
 [32, 33],
 [34, 35],
 [36, 37],
 [38, 39]]])

y[3, 2, 1]

35

y[:, 2, 1]

array([5, 15, 25, 35])

y[2:, :1, :] # Last 2 axes, 1st row, all columns

array([[[20, 21]],

 [[30, 31]]])

y.transpose()

https://en.wikipedia.org/wiki/Transpose

You can get the dimensions of an array with shape

Some numpy functions apply by default to the whole array, but can be chosen to act only on certain axes:

3.4.6 Array Datatypes

A Python list can contain data of mixed type:

A NumPy array always contains just one datatype:

NumPy will choose the least-generic-possible datatype that can contain the data:

You can access the array’s dtype, or check the type of individual elements:

array([[[0, 10, 20, 30],
 [2, 12, 22, 32],
 [4, 14, 24, 34],
 [6, 16, 26, 36],
 [8, 18, 28, 38]],

 [[1, 11, 21, 31],
 [3, 13, 23, 33],
 [5, 15, 25, 35],
 [7, 17, 27, 37],
 [9, 19, 29, 39]]])

y.shape # 4 Arrays - 5 Rows - 2 Columns

(4, 5, 2)

y.transpose().shape # 2 Arrays - 5 Rows - 4 Columns

(2, 5, 4)

x = np.arange(12).reshape(4, 3)
x

array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

x.mean(1) # Mean along the second axis, leaving the first.

array([1., 4., 7., 10.])

x.mean(0) # Mean along the first axis, leaving the second.

array([4.5, 5.5, 6.5])

x.mean() # mean of all axes

5.5

x = ["hello", 2, 3.4]

type(x[2])

float

type(x[1])

int

np.array(x)

array(['hello', '2', '3.4'], dtype='<U32')

y = np.array([2, 3.4])

y

array([2. , 3.4])

y.dtype

dtype('float64')

type(y[0])

numpy.float64

z = np.array([3, 4, 5])
z

array([3, 4, 5])

type(z[0])

The results are, when you get to know them, fairly obvious string codes for datatypes: NumPy supports all kinds of

datatypes beyond the python basics.

NumPy will convert python type names to dtypes:

3.5 Advanced NumPy

Estimated time to complete this notebook: 20 minutes

3.5.1 Recap

In the previous section we introduced numpy array that represents a multidimensional matrix . Which, among

other things, allows for vectorised versions of common functions.

3.5.2 Broadcasting

This is another really powerful feature of NumPy.

By default, array operations are element-by-element:

If we multiply arrays with non-matching shapes we get an error:

Arrays must match in all dimensions in order to be compatible:

numpy.int64

x = [2, 3.6, 7.2, 0]

int_array = np.array(x, dtype=int)

int_array

array([2, 3, 7, 0])

int_array.dtype

dtype('int64')

float_array = np.array(x, dtype=float)

float_array

array([2. , 3.6, 7.2, 0.])

float_array.dtype

dtype('float64')

Mi,j,k...n

import numpy as np

np.arange(5) * np.arange(5)

array([0, 1, 4, 9, 16])

np.arange(5) * np.arange(6)

ValueError Traceback (most recent call last)
Cell In[3], line 1
----> 1 np.arange(5) * np.arange(6)

ValueError: operands could not be broadcast together with shapes (5,) (6,)

np.zeros([2, 3]) * np.zeros([2, 4])

ValueError Traceback (most recent call last)
Cell In[4], line 1
----> 1 np.zeros([2, 3]) * np.zeros([2, 4])

ValueError: operands could not be broadcast together with shapes (2,3) (2,4)

m1 = np.arange(100).reshape([10, 10])

m2 = np.arange(100).reshape([10, 5, 2])

m1 + m2

ValueError Traceback (most recent call last)
Cell In[7], line 1
----> 1 m1 + m2

ValueError: operands could not be broadcast together with shapes (10,10) (10,5,2)

np.ones([3, 3]) * np.ones([3, 3]) # Note elementwise multiply, *not* matrix
multiply.

Except, that if one array has any Dimension 1, then the data is REPEATED to match the other.

This works for arrays with more than one unit dimension.

3.5.3 Another example

array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

m3 = np.arange(9).reshape([3, 3])
m3

array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

m4 = np.arange(9, 18).reshape([3, 3])
m4

array([[9, 10, 11],
 [12, 13, 14],
 [15, 16, 17]])

m3 * m4 # Note elementwise multiply, *not* matrix multiply.

array([[0, 10, 22],
 [36, 52, 70],
 [90, 112, 136]])

col = np.arange(10).reshape([10, 1])
col

array([[0],
 [1],
 [2],
 [3],
 [4],
 [5],
 [6],
 [7],
 [8],
 [9]])

row = col.transpose()
row

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])

col.shape # "Column Vector"

(10, 1)

row.shape # "Row Vector"

(1, 10)

row + col

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
 [5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
 [7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
 [8, 9, 10, 11, 12, 13, 14, 15, 16, 17],
 [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]])

10 * row + col

array([[0, 10, 20, 30, 40, 50, 60, 70, 80, 90],
 [1, 11, 21, 31, 41, 51, 61, 71, 81, 91],
 [2, 12, 22, 32, 42, 52, 62, 72, 82, 92],
 [3, 13, 23, 33, 43, 53, 63, 73, 83, 93],
 [4, 14, 24, 34, 44, 54, 64, 74, 84, 94],
 [5, 15, 25, 35, 45, 55, 65, 75, 85, 95],
 [6, 16, 26, 36, 46, 56, 66, 76, 86, 96],
 [7, 17, 27, 37, 47, 57, 67, 77, 87, 97],
 [8, 18, 28, 38, 48, 58, 68, 78, 88, 98],
 [9, 19, 29, 39, 49, 59, 69, 79, 89, 99]])

x = np.array([1, 2]).reshape(1, 2)
x

array([[1, 2]])

y = np.array([3, 4, 5]).reshape(3, 1)
y

array([[3],
 [4],
 [5]])

result = x + y
result.shape

What numpy is doing:

Numpy broadcasting example

3.5.4 Newaxis

Broadcasting is very powerful, and numpy allows indexing with np.newaxis to temporarily create new one-long

dimensions on the fly.

Note that newaxis works because a array and a array contain the same data, differently shaped:

3.5.5 Dot Products using broadcasting

NumPy multiply is element-by-element, not a dot-product:

(3, 2)

result

array([[4, 5],
 [5, 6],
 [6, 7]])

import numpy as np

x = np.arange(10).reshape(2, 5)
y = np.arange(8).reshape(2, 2, 2)

x

array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])

y

array([[[0, 1],
 [2, 3]],

 [[4, 5],
 [6, 7]]])

x_dash = x[:, :, np.newaxis, np.newaxis]
x_dash.shape

(2, 5, 1, 1)

y_dash = y[:, np.newaxis, :, :]
y_dash.shape

(2, 1, 2, 2)

y_dash

array([[[[0, 1],
 [2, 3]]],

 [[[4, 5],
 [6, 7]]]])

res = x_dash * y_dash

res.shape

(2, 5, 2, 2)

np.sum(res)

830

3 × 1 × 3 3 × 3

threebythree = np.arange(9).reshape(3, 3)
threebythree

array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

threebythree[:, np.newaxis, :]

array([[[0, 1, 2]],

 [[3, 4, 5]],

 [[6, 7, 8]]])

a = np.arange(9).reshape(3, 3)
a

array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

We can use what we’ve learned about the algebra of broadcasting and newaxis to get a dot-product, (matrix inner

product).

First we add new axes to and :

Now we use broadcasting to generate as a 3-d matrix:

Then we sum over the middle, axis, [which is the 1-axis of three axes numbered (0,1,2)] of this 3-d matrix. Thus

we generate .

Or if you prefer:

We can see that the broadcasting concept gives us a powerful and efficient way to express many linear algebra

operations computationally.

3.5.6 Dot Products using numpy functions

However, as the dot-product is a common operation, numpy has a built in function:

This can also be written as:

If you are using Python 3.5 or later, a dedicated matrix multiplication operator has been added, allowing you to do

the following:

3.5.7 Record Arrays

These are a special array structure designed to match the CSV “Record and Field” model. It’s a very different

structure from the normal NumPy array, and different fields can contain different datatypes. We saw this when we

looked at CSV files:

b = np.arange(3, 12).reshape(3, 3)
b

array([[3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

a * b

array([[0, 4, 10],
 [18, 28, 40],
 [54, 70, 88]])

A B

a[:, :, np.newaxis].shape

(3, 3, 1)

b[np.newaxis, :, :].shape

(1, 3, 3)

AijBjk

a[:, :, np.newaxis] * b[np.newaxis, :, :]

array([[[0, 0, 0],
 [6, 7, 8],
 [18, 20, 22]],

 [[9, 12, 15],
 [24, 28, 32],
 [45, 50, 55]],

 [[18, 24, 30],
 [42, 49, 56],
 [72, 80, 88]]])

j

ΣjAijBjk

(a[:, :, np.newaxis] * b[np.newaxis, :, :]).sum(1)

array([[24, 27, 30],
 [78, 90, 102],
 [132, 153, 174]])

(a.reshape(3, 3, 1) * b.reshape(1, 3, 3)).sum(1)

array([[24, 27, 30],
 [78, 90, 102],
 [132, 153, 174]])

np.dot(a, b)

array([[24, 27, 30],
 [78, 90, 102],
 [132, 153, 174]])

a.dot(b)

array([[24, 27, 30],
 [78, 90, 102],
 [132, 153, 174]])

a @ b

array([[24, 27, 30],
 [78, 90, 102],
 [132, 153, 174]])

Record arrays can be addressed with field names like they were a dictionary:

Indeed we can use these methods when parsing CSV files instead of using Pandas.

3.5.8 Logical arrays, masking, and selection

Numpy defines operators like == and < to apply to arrays element by element:

A logical array can be used to select elements from an array:

Although when printed, this comes out as a flat list, if assigned to, the selected elements of the array are

changed!

3.5.9 Numpy memory

NumPy manages memory differently from lists. Changing an element in a copy of a list does not change the original

list.

x = np.arange(50).reshape([10, 5])

record_x = x.view(
 dtype={"names": ["col1", "col2", "another", "more", "last"], "formats": [int]
* 5}
)

record_x

array([[(0, 1, 2, 3, 4)],
 [(5, 6, 7, 8, 9)],
 [(10, 11, 12, 13, 14)],
 [(15, 16, 17, 18, 19)],
 [(20, 21, 22, 23, 24)],
 [(25, 26, 27, 28, 29)],
 [(30, 31, 32, 33, 34)],
 [(35, 36, 37, 38, 39)],
 [(40, 41, 42, 43, 44)],
 [(45, 46, 47, 48, 49)]],
 dtype=[('col1', '<i8'), ('col2', '<i8'), ('another', '<i8'), ('more',
'<i8'), ('last', '<i8')])

record_x["col1"]

array([[0],
 [5],
 [10],
 [15],
 [20],
 [25],
 [30],
 [35],
 [40],
 [45]])

x = np.zeros([3, 4])
x

array([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]])

y = np.arange(-1, 2)[:, np.newaxis] * np.arange(-2, 2)[np.newaxis, :]
y

array([[2, 1, 0, -1],
 [0, 0, 0, 0],
 [-2, -1, 0, 1]])

y_is_one = y == 1
y_is_one

array([[False, True, False, False],
 [False, False, False, False],
 [False, False, False, True]])

aresame = x == y
aresame

array([[False, False, True, False],
 [True, True, True, True],
 [False, False, True, False]])

y[np.logical_not(aresame)]

array([2, 1, -1, -2, -1, 1])

y[aresame] = 5

y

array([[2, 1, 5, -1],
 [5, 5, 5, 5],
 [-2, -1, 5, 1]])

x = list(range(5))
y = x[:]

y[2] = 0
x

But in NumPy, changing the copy does change the original array!

We must use np.copy to force separate memory. Otherwise NumPy tries its hardest to make slices be views on data.

3.6 The Boids!

Estimated time to complete this notebook: 45 minutes.

⚠ Warning: Advanced Topic! ⚠

Our earlier discussion of NumPy was very theoretical, but let’s go through a practical example, and see how

powerful NumPy can be.

Note this is more a showcase of what you can do with numpy than an exhaustive notebook to work through

3.6.1 Flocking

The aggregate motion of a flock of birds, a herd of land animals, or a school of fish is a beautiful and

familiar part of the natural world… The aggregate motion of the simulated flock is created by a

distributed behavioral model much like that at work in a natural flock; the birds choose their own course.

Each simulated bird is implemented as an independent actor that navigates according to its local

perception of the dynamic environment, the laws of simulated physics that rule its motion, and a set of

behaviors programmed into it… The aggregate motion of the simulated flock is the result of the dense

interaction of the relatively simple behaviors of the individual simulated birds.

– Craig W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model”, Computer Graphics 21 4

1987, pp 25-34

We will demonstrate an algorithm to simulate flocking behaviour in numpy. The simulation consists of a set of

individual bird-like objects that we will call ‘boids’ following the nomenclature of the original paper for more

details.

Collision Avoidance: avoid collisions with nearby flockmates

Velocity Matching: attempt to match velocity with nearby flockmates

Flock Centering: attempt to stay close to nearby flockmates

3.6.2 Setting up the Boids

Our boids will each have an x velocity and a y velocity, and an x position and a y position.

We’ll build this up in NumPy notation, and eventually, have an animated simulation of our flying boids.

Let’s start with simple flying in a straight line.

Our positions, for each of our N boids, will be an array, shape , with the x positions in the first row, and y

positions in the second row.

We’ll want to be able to seed our Boids in a random position.

We’d better define the edges of our simulation area:

We used broadcasting with np.newaxis to apply our upper limit to each boid. rand gives us a random number between 0

and 1. We multiply by our limits to get a number up to that limit.

[0, 1, 2, 3, 4]

x = np.arange(5)
y = x[:]

y[2] = 0
x

array([0, 1, 0, 3, 4])

import numpy as np

2 × N

boid_count = 10

limits = np.array([2000, 2000])

positions = np.random.rand(2, boid_count) * limits[:, np.newaxis]
positions

array([[1613.141782 , 134.8307355 , 1148.04562862, 1549.16478655,
 1859.34277654, 890.14907534, 1488.45517666, 1514.66918813,
 1735.77467243, 266.478712],
 [664.18305931, 703.28897925, 1666.7906796 , 676.51755571,
 421.76327382, 517.71462161, 382.68147254, 192.21418253,
 136.74599457, 1812.72857411]])

positions.shape

(2, 10)

limits[:, np.newaxis]

array([[2000],
 [2000]])

limits[:, np.newaxis].shape

http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/

So we multiply a array by a array – and get a array.

Let’s put that in a function:

For example, let’s assume that we want our initial positions to vary between 100 and 200 in the x axis, and 900 and

1100 in the y axis. We can generate random positions within these constraints with:

But each boid will also need a starting velocity. Let’s make these random too:

We can reuse the new_flock function defined above, since we’re again essentially just generating random numbers from

given limits. This saves us some code, but keep in mind that using a function for something other than what its

name indicates can become confusing!

Here, we will let the initial x velocities range over and the y velocities over .

3.6.3 Flying in a Straight Line

Now we see the real amazingness of NumPy: if we want to move our whole flock according to

we just do:

3.6.4 Matplotlib Animations

So now we can animate our Boids using the matplotlib animation tools All we have to do is import the relevant

libraries:

Then, we make a static plot, showing our first frame:

Then, we define a function which updates the figure for each timestep

(2, 1)

np.random.rand(2, boid_count).shape

(2, 10)

2 × 1 2 × 10 2 × 10

def new_flock(count, lower_limits, upper_limits):
 width = upper_limits - lower_limits
 return lower_limits[:, np.newaxis] + np.random.rand(2, count) * width[:,
np.newaxis]

positions = new_flock(boid_count, np.array([100, 900]), np.array([200, 1100]))

[0, 10] [−20, 20]

velocities = new_flock(boid_count, np.array([0, -20]), np.array([10, 20]))
velocities

array([[4.81424007, 6.42079795, 6.74835434, 3.58134683,
 4.26739846, 7.02434419, 9.950596 , 8.15999296,
 6.48154088, 0.79281907],
 [-15.33358915, 18.39593297, 2.20766427, -12.52930186,
 7.25585332, 6.08379273, -8.55073313, -5.36526864,
 -9.26069428, -13.88261774]])

δx = δt ⋅ dv
dt

positions += velocities

from matplotlib import animation
from matplotlib import pyplot as plt

create a simple plot
initial x position in [100, 200], initial y position in [900, 1100]
initial x velocity in [0, 10], initial y velocity in [-20, 20]
positions = new_flock(100, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(100, np.array([0, -20]), np.array([10, 20]))

figure = plt.figure()
axes = plt.axes(xlim=(0, limits[0]), ylim=(0, limits[1]))
scatter = axes.scatter(
 positions[0, :], positions[1, :], marker="o", edgecolor="k", lw=0.5
)
scatter

<matplotlib.collections.PathCollection at 0x7ffb4376bd30>

Call FuncAnimation, and specify how many frames we want:

Save out the figure:

And download the saved animation.

You can even view the results directly in the notebook.

 Once Loop Reflect

3.6.5 Extended content: The Boids!

The examples given below are examples of how to use numpy to efficiently apply equations to arrays. here are many

potential ways to do such things, and this is intended as a showcase of numpy’s versatility rather than a

prescribed set of rules.

3.6.5.0 Fly towards the middle

Boids try to fly towards the middle:

This is easier and faster than:

def update_boids(positions, velocities):
 positions += velocities

def animate(frame):
 update_boids(positions, velocities)
 scatter.set_offsets(positions.transpose())

anim = animation.FuncAnimation(figure, animate, frames=50, interval=50)

positions = new_flock(100, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(100, np.array([0, -20]), np.array([10, 20]))
anim.save("boids_1.gif")

from IPython.display import HTML

positions = new_flock(100, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(100, np.array([0, -20]), np.array([10, 20]))
HTML(anim.to_jshtml())

positions = new_flock(4, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(4, np.array([0, -20]), np.array([10, 20]))

positions

array([[189.4057344 , 183.79498588, 146.66929416, 103.76053922],
 [934.43960008, 1019.40815183, 976.18744604, 1043.07715489]])

velocities

array([[0.1837116 , 3.85603971, 2.31628147, 1.98465633],
 [10.39147295, -17.96592485, -9.41020748, -7.65994491]])

middle = np.mean(positions, 1)
middle

array([155.90763842, 993.27808821])

direction_to_middle = positions - middle[:, np.newaxis]
direction_to_middle

array([[33.49809599, 27.88734747, -9.23834426, -52.14709919],
 [-58.83848813, 26.13006361, -17.09064217, 49.79906668]])

for boid in boids:
 for dimension in [0, 1]:
 direction_to_middle[dimension][boid] = positions[dimension][boid] - middle[dimension]

move_to_middle_strength = 0.01
velocities = velocities - direction_to_middle * move_to_middle_strength

https://alan-turing-institute.github.io/rse-course/html/module03_research_data_in_python/boids_1.gif

Let’s update our function, and animate that:

 Once Loop Reflect

3.6.5.1 Avoiding collisions

We’ll want to add our other flocking rules to the behaviour of the Boids.

We’ll need a matrix giving the distances between each boid. This should be .

We might think that we need to do the X-distances and Y-distances separately:

But in NumPy we can be cleverer than that, and make a matrix of separations:

And then we can get the sum-of-squares like this:

Now we need to find boids that are too close:

def update_boids(positions, velocities):
 move_to_middle_strength = 0.01
 middle = np.mean(positions, 1)
 direction_to_middle = positions - middle[:, np.newaxis]
 velocities -= direction_to_middle * move_to_middle_strength
 positions += velocities

def animate(frame):
 update_boids(positions, velocities)
 scatter.set_offsets(positions.transpose())

anim = animation.FuncAnimation(figure, animate, frames=50, interval=50)

positions = new_flock(100, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(100, np.array([0, -20]), np.array([10, 20]))
HTML(anim.to_jshtml())

N × N

positions = new_flock(4, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(4, np.array([0, -20]), np.array([10, 20]))

xpos = positions[0, :]

xsep_matrix = xpos[:, np.newaxis] - xpos[np.newaxis, :]

xsep_matrix.shape

(4, 4)

xsep_matrix

array([[0. , -6.90178594, -11.77826135, -33.70675851],
 [6.90178594, 0. , -4.87647541, -26.80497257],
 [11.77826135, 4.87647541, 0. , -21.92849716],
 [33.70675851, 26.80497257, 21.92849716, 0.]])

2 × N × N

separations = positions[:, np.newaxis, :] - positions[:, :, np.newaxis]

separations.shape

(2, 4, 4)

δ2
x + δ2

y

squared_displacements = separations * separations

square_distances = np.sum(squared_displacements, 0)

square_distances

array([[0. , 18256.17142412, 4178.91570252, 1873.81977048],
 [18256.17142412, 0. , 5118.38991078, 26994.64735919],
 [4178.91570252, 5118.38991078, 0. , 8711.45523711],
 [1873.81977048, 26994.64735919, 8711.45523711, 0.]])

Find the direction distances only to those boids which are too close:

Set x and y values in separations_if_close to zero if they are far away:

And fly away from them:

Now we can update our animation:

 Once Loop Reflect

3.6.5.2 Match speed with nearby boids

This is pretty similar:

alert_distance = 2000
close_boids = square_distances < alert_distance
close_boids

array([[True, False, False, True],
 [False, True, False, False],
 [False, False, True, False],
 [True, False, False, True]])

separations_if_close = np.copy(separations)
far_away = np.logical_not(close_boids)

separations_if_close[0, :, :][far_away] = 0
separations_if_close[1, :, :][far_away] = 0
separations_if_close

array([[[0. , 0. , 0. , 33.70675851],
 [0. , 0. , 0. , 0.],
 [0. , 0. , 0. , 0.],
 [-33.70675851, 0. , 0. , 0.]],

 [[0. , 0. , 0. , -27.16015834],
 [0. , 0. , 0. , 0.],
 [0. , 0. , 0. , 0.],
 [27.16015834, 0. , 0. , 0.]]])

np.sum(separations_if_close, 2)

array([[33.70675851, 0. , 0. , -33.70675851],
 [-27.16015834, 0. , 0. , 27.16015834]])

velocities = velocities + np.sum(separations_if_close, 2)

def update_boids(positions, velocities):
 move_to_middle_strength = 0.01
 middle = np.mean(positions, 1)
 direction_to_middle = positions - middle[:, np.newaxis]
 velocities -= direction_to_middle * move_to_middle_strength

 separations = positions[:, np.newaxis, :] - positions[:, :, np.newaxis]
 squared_displacements = separations * separations
 square_distances = np.sum(squared_displacements, 0)
 alert_distance = 100
 far_away = square_distances > alert_distance
 separations_if_close = np.copy(separations)
 separations_if_close[0, :, :][far_away] = 0
 separations_if_close[1, :, :][far_away] = 0
 velocities += np.sum(separations_if_close, 1)

 positions += velocities

def animate(frame):
 update_boids(positions, velocities)
 scatter.set_offsets(positions.transpose())

anim = animation.FuncAnimation(figure, animate, frames=50, interval=50)

positions = new_flock(100, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(100, np.array([0, -20]), np.array([10, 20]))
HTML(anim.to_jshtml())

 Once Loop Reflect

Hopefully the power of numpy should be pretty clear now. This would be enormously slower and, I think, harder to

understand using traditional lists.

3.7 Classroom Exercises

List of exercises and estimated completion times

3a - Saving and Loading Data 5 minutes

3b - Plotting with matplotlib 10 minutes

3c The Biggest Earthquake in the UK This Century 30 minutes

Exercise 3a Saving and Loading Data

Relevant sections: 3.2.2, 3.2.3

Use YAML or JSON to save your maze data structure to disk and load it again.

The maze would have looked something like this:

Exercise 3b Plotting with matplotlib

Generate two plots, next to each other (on the same row).

The first plot should show sin(x) and cos(x) for the range of x between -1 pi and +1 pi.

def update_boids(positions, velocities):
 move_to_middle_strength = 0.01
 middle = np.mean(positions, 1)
 direction_to_middle = positions - middle[:, np.newaxis]
 velocities -= direction_to_middle * move_to_middle_strength

 separations = positions[:, np.newaxis, :] - positions[:, :, np.newaxis]
 squared_displacements = separations * separations
 square_distances = np.sum(squared_displacements, 0)
 alert_distance = 100
 far_away = square_distances > alert_distance
 separations_if_close = np.copy(separations)
 separations_if_close[0, :, :][far_away] = 0
 separations_if_close[1, :, :][far_away] = 0
 velocities += np.sum(separations_if_close, 1)

 velocity_differences = velocities[:, np.newaxis, :] - velocities[:, :,
np.newaxis]
 formation_flying_distance = 10000
 formation_flying_strength = 0.125
 very_far = square_distances > formation_flying_distance
 velocity_differences_if_close = np.copy(velocity_differences)
 velocity_differences_if_close[0, :, :][very_far] = 0
 velocity_differences_if_close[1, :, :][very_far] = 0
 velocities -= np.mean(velocity_differences_if_close, 1) *
formation_flying_strength

 positions += velocities

def animate(frame):
 update_boids(positions, velocities)
 scatter.set_offsets(positions.transpose())

anim = animation.FuncAnimation(figure, animate, frames=200, interval=50)

positions = new_flock(100, np.array([100, 900]), np.array([200, 1100]))
velocities = new_flock(100, np.array([0, -20]), np.array([10, 20]))
HTML(anim.to_jshtml())

house = {
 "living": {
 "exits": {"north": "kitchen", "outside": "garden", "upstairs": "bedroom"},
 "people": ["James"],
 "capacity": 2,
 },
 "kitchen": {"exits": {"south": "living"}, "people": [], "capacity": 1},
 "garden": {"exits": {"inside": "living"}, "people": ["Sue"], "capacity": 3},
 "bedroom": {
 "exits": {"downstairs": "living", "jump": "garden"},
 "people": [],
 "capacity": 1,
 },
}

Hint: The range(start, stop, step) function only works with integers. Use the arange function from numpy instead:

np.arange(start, stop, step).

The second plot should show sin(x), cos(x) and the sum of sin(x) and cos(x) over the same -pi to +pi range. Set

suitable limits on the axes and pick colours, markers, or line-styles that will make it easy to differentiate

between the curves. Add legends to both axes.

Exercise 3c The Biggest Earthquake in the UK This Century

GeoJSON is a json-based file format for sharing geographic data. One example dataset is the USGS earthquake data:

The Problem

Determine the location of the largest magnitude earthquake in the UK this century.

You can break this exercise down into several subtasks. You’ll need to:

Load the data

Get the text of the web result

Parse the data as JSON

Investigate the data

Understand how the data is structured into dictionaries and lists

Where is the magnitude?

Where is the place description or coordinates?

Search through the data

Program a search through all the quakes to find the biggest quake

Find the place of the biggest quake

Visualise your answer

Form a URL for an online map service at that latitude and longitude: look back at the introductory example

Display that image

4. Version Control
Why use version control

Solo use of version control

Publishing your code to GitHub

Collaborating with others through Git

Branching

Rebasing and Merging

Debugging with GitBisect

Forks, Pull Requests and the GitHub Flow

Contents

4.0 Introduction to version control (10 minutes)

4.1 Solo work with git (15 minutes)

4.2 Fixing mistakes (10 minutes)

4.3 Publishing (15 minutes)

4.4 Collaboration (20 minutes)

4.5 Fork and Pull (10 minutes)

4.6 Git Theory (5 minutes)

4.7 Branches (10 minutes)

4.8 Advanced git concepts (15 minutes)

4.9 Publishing from GitHub (5 minutes)

4.10 Rebasing (10 minutes)

4.11 Debugging With git bisect (10 minutes)

4.12 Working with multiple remotes (10 minutes)

Total time: 2 hrs 25 minutes

Teaching notes

If you are teaching this course, please remove any .gitconfig files you might have in your home directory. It is

fine to restore them once you’ve finished teaching but you may otherwise have settings that interfere with the

examples shown here.

Exercises

import requests

quakes = requests.get(
 "http://earthquake.usgs.gov/fdsnws/event/1/query.geojson",
 params={
 "starttime": "2000-01-01",
 "maxlatitude": "58.723",
 "minlatitude": "50.008",
 "maxlongitude": "1.67",
 "minlongitude": "-9.756",
 "minmagnitude": "1",
 "endtime": "2021-01-19",
 "orderby": "time-asc",
 },
 timeout=60,
)

quakes.text[0:100]

'{"type":"FeatureCollection","metadata":
{"generated":1717402305000,"url":"https://earthquake.usgs.gov'

Classroom exercises are included inline in the module. We recommend that instructors schedule the exercises to be

done in groups during breaks in the taught content. However, it is important that participants also have some time

away from their screens. Exercises can also be left as self-paced homework assignments if preferred.

4.0 Introduction to version control

Estimated time to complete this notebook: 10 minutes

What’s version control?

Version control is a tool for managing changes to a set of files.

There are many different version control systems:

Git

Mercurial (hg)

CVS

Subversion (svn)

…

Why use version control?

Better kind of backup.

Review history (“When did I introduce this bug?”).

Restore older code versions.

Ability to undo mistakes.

Maintain several versions of the code at a time.

Git is also a collaborative tool:

“How can I share my code?”

“How can I submit a change to someone else’s code?”

“How can I merge my work with Sue’s?”

Git != GitHub

Git: version control system tool to manage source code history.

GitHub: hosting service for Git repositories.

How do we use version control?

Do some programming, then commit our work:

my_vcs commit

Program some more.

Spot a mistake:

my_vcs rollback

Mistake is undone.

What is version control? (Team version)

Sue James

my_vcs commit …

… Join the team

… my_vcs checkout

… Do some programming

… my_vcs commit

my_vcs update …

Do some programming Do some programming

my_vcs commit …

my_vcs update …

my_vcs merge …

my_vcs commit …

Scope

This course will use the git version control system, but much of what you learn will be valid with other version

control tools you may encounter, including subversion (svn) and mercurial (hg).

4.0.1 Practising with Git

Example Exercise

In this course, we will use, as an example, the development of a few text files containing a description of a topic

of your choice.

This could be your research, a hobby, or something else. In the end, we will show you how to display the content of

these files as a very simple website.

Programming and documents

The purpose of this exercise is to learn how to use Git to manage program code you write, not simple text website

content, but we’ll just use these text files instead of code for now, so as not to confuse matters with trying to

learn version control while thinking about programming too.

In later parts of the course, you will use the version control tools you learn today with actual Python code.

Markdown

The text files we create will use a simple “wiki” markup style called markdown to show formatting. This is the

convention used in this file, too.

You can view the content of this file in the way Markdown renders it by looking on the web, and compare the raw

text.

Displaying Text in this Tutorial

This tutorial is based on use of the Git command line. So you’ll be typing commands in the shell.

To make it easy for me to edit, I’ve built it using Jupyter notebook.

Commands you can type will look like this, using the %%bash “magic” for the notebook.

If you are running the notebook on windows you’ll have to use %%cmd.

with the results you should see below.

In this document, we will show the new content of an edited document like this:

But if you are following along, you should edit the file using a text editor.

Setting up somewhere to work

I just need to move this Jupyter notebook’s current directory as well:

4.0.2 Solo work

Configuring Git with your name and email

First, we should configure Git to know our name and email address:

Note that by using the --global flag, we are setting these options for all projects. To set them just for this

project, use --local instead.

Now check that this worked

Initialising the repository

Now, we will tell Git to track the content of this folder as a git “repository”.

%%bash
echo some output

some output

%%writefile somefile.md
Some content here

Writing somefile.md

%%bash
rm -rf learning_git/git_example # Just in case it's left over from a previous
class; you won't need this
mkdir -p learning_git/git_example
cd learning_git/git_example

import os

top_dir = os.getcwd()
top_dir

'/home/runner/work/rse-course/rse-course/module04_version_control_with_git'

git_dir = os.path.join(top_dir, "learning_git")
git_dir

'/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git'

working_dir = os.path.join(git_dir, "git_example")

os.chdir(working_dir)

git config --global user.name "YOUR NAME HERE"
git config --global user.email "yourname@example.com"

%%bash
git config --get user.name

Turing Developer

%%bash
git config --get user.email

developer@example.com

%%bash
pwd # Note where we are standing-- MAKE SURE YOU INITIALISE THE RIGHT FOLDER
git init --initial-branch=main

http://daringfireball.net/projects/markdown/basics
https://alan-turing-institute.github.io/rse-course/html/module04_version_control_with_git/04_00_introduction.html
https://raw.githubusercontent.com/alan-turing-institute/rse-course/main/module04_version_control_with_git/04_00_introduction.ipynb
https://alan-turing-institute.github.io/rse-course/html/course_prerequisites/03_editor.html

As yet, this repository contains no files:

4.1 Solo work with git

Estimated time to complete this notebook: 15 minutes

4.1.1 Getting started

So, we’re in our git working directory:

A first example file

So let’s create an example file, and see how to start to manage a history of changes to it.

Telling Git about the File

So, let’s tell Git that test.md is a file which is important, and we would like to keep track of its history:

Don’t forget: Any files in repositories which you want to “track” need to be added with git add after you create

them.

Our first commit

Now, we need to tell Git to record the first version of this file in the history of changes:

And note the confirmation from Git.

There’s a lot of output there you can ignore for now.

Configuring Git with your editor

/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/git_example

Initialized empty Git repository in /home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/git_example/.git/

%%bash
ls

%%bash
git status

On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)
working_dir

'/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/git_example'

<my editor> test.md # Type some content into the file.

%%writefile test.md
Mountains in the UK
===================
England is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

Writing test.md

cat test.md

Mountains in the UK
===================
England is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

%%bash
git add test.md

%%bash
git commit -m "First commit of discourse on UK topography"

[main (root-commit) ebcfba4] First commit of discourse on UK topography

 1 file changed, 4 insertions(+)

 create mode 100644 test.md

If you don’t type in the log message directly with -m “Some message”, then an editor will pop up, to allow you to

edit your message on the fly.

For this to work, you have to tell git where to find your editor.

You can find out what you currently have with:

To configure Notepad++ on Windows you’ll need something like the below, ask a demonstrator if you need help:

I’m going to be using vim as my editor, but you can use whatever editor you prefer. (Windows users could use

Notepad++, Mac users could use textmate or Sublime Text, Linux users could use vim, nano or emacs.)

4.1.2 Commit logs

Git log

Git now has one change in its history:

You can see the commit message, author, and date…

Hash Codes

The commit “hash code”, e.g.

238eaff15e2769e0ef1d989f1a2e8be1873fa0ab

is a unique identifier of that particular revision.

This is a really long code, but whenever you need to use it, you can just use the first few characters. You just

need however many characters is long enough to make it unique, for example 238eaff1.

Nothing to see here

Note that git will now tell us that our “working directory” is up-to-date with the repository: there are no changes

to the files that aren’t recorded in the repository history:

4.1.3 Staging changes

Let’s edit the file again:

Unstaged changes

git config --global core.editor vim

git config --get core.editor

git config --global core.editor "'C:/Program Files (x86)/Notepad++/notepad++.exe' -multiInst -nosession -noPlugin"

%%bash
git log

commit ebcfba48e00cdd6273aafa3d4482ac5b560b76ae

Author: Turing Developer <developer@example.com>

Date: Mon Jun 3 08:11:48 2024 +0000

 First commit of discourse on UK topography

%%bash
git status

On branch main

nothing to commit, working tree clean

vim test.md

%%writefile test.md
Mountains in the UK
===================
England is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

Mount Fictional, in Barsetshire, U.K. is the tallest mountain in the world.

Overwriting test.md

cat test.md

Mountains in the UK
===================
England is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

Mount Fictional, in Barsetshire, U.K. is the tallest mountain in the world.

%%bash
git status

We can now see that there is a change to “test.md” which is currently “not staged for commit”. What does this mean?

If we do a git commit now nothing will happen.

Git will only commit changes to files that you choose to include in each commit.

This is a difference from other version control systems, where committing will affect all changed files.

We can see the differences in the file with:

Deleted lines are prefixed with a minus, added lines prefixed with a plus.

Staging a file to be included in the next commit

To include the file in the next commit, we have a few choices. This is one of the things to be careful of with git:

there are lots of ways to do similar things, and it can be hard to keep track of them all.

This says “include in the next commit, all files which have ever been included before”.

Note that git add is the command we use to introduce git to a new file, but also the command we use to “stage” a

file to be included in the next commit.

The staging area

The “staging area” or “index” is the git jargon for the place which contains the list of changes which will be

included in the next commit.

You can include specific changes to specific files with git add, commit them, add some more files, and commit them.

(You can even add specific changes within a file to be included in the index.)

4.1.4 Visualising changes

Message Sequence Charts

In order to illustrate the behaviour of Git, it will be useful to be able to generate figures in Python of a

“message sequence chart” flavour.

There’s a nice online tool to do this, called “Message Sequence Charts”.

Have a look at https://www.websequencediagrams.com

Instead of just showing you these diagrams, I’m showing you in this notebook how I make them. This is part of our

“reproducible computing” approach; always generating all our figures from code.

Here’s some quick code in the Notebook to download and display an MSC illustration, using the Web Sequence Diagrams

API:

On branch main

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: test.md

no changes added to commit (use "git add" and/or "git commit -a")

%%bash
git diff

diff --git a/test.md b/test.md

index 1852ebc..b63f764 100644

--- a/test.md

+++ b/test.md

@@ -2,3 +2,5 @@ Mountains in the UK

 ===================

 England is not very mountainous.

 But has some tall hills, and maybe a mountain or two depending on your
definition.

+

+Mount Fictional, in Barsetshire, U.K. is the tallest mountain in the world.

%%bash
git add --update

http://test.md/
https://www.websequencediagrams.com/

The Levels of Git

Let’s make ourselves a sequence chart to show the different aspects of Git we’ve seen so far:

4.1.6 Correcting mistakes

Review of status

%%writefile wsd.py
import requests
import re
import IPython

def wsd(code):
 response = requests.post(
 "http://www.websequencediagrams.com/index.php",
 data={
 "message": code,
 "apiVersion": 1,
 },
)
 expr = re.compile("(\?(img|pdf|png|svg)=[a-zA-Z0-9]+)")
 m = expr.search(response.text)
 if m == None:
 print("Invalid response from server.")
 return False

 image = requests.get("http://www.websequencediagrams.com/" + m.group(0))
 return IPython.core.display.Image(image.content)

Writing wsd.py

%matplotlib inline
from wsd import wsd

wsd("Sender->Recipient: Hello\n Recipient->Sender: Message received OK")

message = """
Working Directory -> Staging Area : git add
Staging Area -> Local Repository : git commit
Working Directory -> Local Repository : git commit -a
"""
wsd(message)

%%bash
git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: test.md

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 __pycache__/

 wsd.py

%%bash
git commit -m "Add a lie about a mountain"

[main b68a6ac] Add a lie about a mountain

 1 file changed, 2 insertions(+)

Great, we now have a file which contains a mistake.

Carry on regardless

In a while, we’ll use Git to roll back to the last correct version: this is one of the main reasons we wanted to

use version control, after all! But for now, let’s do just as we would if we were writing code, not notice our

mistake and keep working…

Commit with a built-in-add

This last command, git commit -a automatically adds changes to all tracked files to the staging area, as part of the

commit command. So, if you never want to just add changes to some tracked files but not others, you can just use

this and forget about the staging area!

Review of changes

%%bash
git log

commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546

Author: Turing Developer <developer@example.com>

Date: Mon Jun 3 08:11:50 2024 +0000

 Add a lie about a mountain

commit ebcfba48e00cdd6273aafa3d4482ac5b560b76ae

Author: Turing Developer <developer@example.com>

Date: Mon Jun 3 08:11:48 2024 +0000

 First commit of discourse on UK topography

vim test.md

%%writefile test.md
Mountains and Hills in the UK
===================
England is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

Mount Fictional, in Barsetshire, U.K. is the tallest mountain in the world.

Overwriting test.md

cat test.md

Mountains and Hills in the UK
===================
England is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

Mount Fictional, in Barsetshire, U.K. is the tallest mountain in the world.

%%bash
git commit -am "Change title"

[main 7292203] Change title

 1 file changed, 1 insertion(+), 1 deletion(-)

%%bash
git log | head

We now have three changes in the history:

Git Solo Workflow

We can make a diagram that summarises the above story:

commit 72922033c88ac0759a8b62a960008c157d9906bd

Author: Turing Developer <developer@example.com>

Date: Mon Jun 3 08:11:50 2024 +0000

 Change title

commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546

Author: Turing Developer <developer@example.com>

Date: Mon Jun 3 08:11:50 2024 +0000

%%bash
git log --oneline

7292203 Change title

b68a6ac Add a lie about a mountain

ebcfba4 First commit of discourse on UK topography

message = """
participant "Jim's repo" as R
participant "Jim's index" as I
participant Jim as J

note right of J: vim test.md

note right of J: git init
J->R: create

note right of J: git add test.md

J->I: Add content of test.md

note right of J: git commit
I->R: Commit content of test.md

note right of J: vim test.md

note right of J: git add --update
J->I: Add content of test.md
note right of J: git commit -m "Add a lie"
I->R: Commit change to test.md

note right of J: vim test.md
note right of J: git commit -am "Change title"
J->R: Add and commit change to test.md (and all tracked files)
"""
wsd(message)

4.2 Fixing mistakes

Estimated time to complete this notebook: 10 minutes

We’re still in our git working directory:

Referring to changes with HEAD and ~

The commit we want to revert to is the one before the latest.

HEAD refers to the latest commit. That is, we want to go back to the change before the current HEAD.

We could use the hash code (e.g. 73fbeaf) to reference this, but you can also refer to the commit before the HEAD

as HEAD~, the one before that as HEAD~~, the one before that as HEAD~3.

Reverting

Ok, so now we’d like to undo the nasty commit with the lie about Mount Fictional.

An editor may pop up, with some default text which you can accept and save.

Conflicted reverts

You may, depending on the changes you’ve tried to make, get an error message here.

If this happens, it is because git could not automagically decide how to combine the change you made after the

change you want to revert, with the attempt to revert the change: this could happen, for example, if they both

touch the same line.

If that happens, you need to manually edit the file to fix the problem. Skip ahead to the section on resolving

conflicts, or ask a demonstrator to help.

Review of changes

The file should now contain the change to the title, but not the extra line with the lie. Note the log:

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)
working_dir

'/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/git_example'

%%bash
git revert HEAD~

Auto-merging test.md

[main f1c705a] Revert "Add a lie about a mountain"

 Date: Mon Jun 3 08:11:52 2024 +0000

 1 file changed, 2 deletions(-)

%%bash
git log --date=short

Antipatch

Notice how the mistake has stayed in the history.

There is a new commit which undoes the change: this is colloquially called an “antipatch”. This is nice: you have a

record of the full story, including the mistake and its correction.

Rewriting history

It is possible, in git, to remove the most recent change altogether, “rewriting history”. Let’s make another bad

change, and see how to do this.

A new lie

commit f1c705a7c3b89f7b16b4951759b73416a34f5444

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Revert "Add a lie about a mountain"

 This reverts commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546.

commit 72922033c88ac0759a8b62a960008c157d9906bd

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Change title

commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Add a lie about a mountain

commit ebcfba48e00cdd6273aafa3d4482ac5b560b76ae

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 First commit of discourse on UK topography

%%writefile test.md
Mountains and Hills in the UK
===================
Engerland is not very mountainous.
But has some tall hills, and maybe a
mountain or two depending on your definition.

Overwriting test.md

%%bash
cat test.md

Mountains and Hills in the UK

===================

Engerland is not very mountainous.

But has some tall hills, and maybe a

mountain or two depending on your definition.

%%bash
git diff

diff --git a/test.md b/test.md

index b4befef..e4bb8ea 100644

--- a/test.md

+++ b/test.md

@@ -1,4 +1,5 @@

 Mountains and Hills in the UK

 ===================

-England is not very mountainous.

-But has some tall hills, and maybe a mountain or two depending on your
definition.

+Engerland is not very mountainous.

+But has some tall hills, and maybe a

+mountain or two depending on your definition.

%%bash
git commit -am "Add a silly spelling"

[main 7dd3ce0] Add a silly spelling

 1 file changed, 3 insertions(+), 2 deletions(-)

%%bash
git log --date=short

Using reset to rewrite history

commit 7dd3ce077a74e331d9b5499905d63d20d292d1f5

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Add a silly spelling

commit f1c705a7c3b89f7b16b4951759b73416a34f5444

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Revert "Add a lie about a mountain"

 This reverts commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546.

commit 72922033c88ac0759a8b62a960008c157d9906bd

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Change title

commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Add a lie about a mountain

commit ebcfba48e00cdd6273aafa3d4482ac5b560b76ae

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 First commit of discourse on UK topography

%%bash
git reset HEAD~

Unstaged changes after reset:

M test.md

%%bash
git log --date=short

Covering your tracks

The silly spelling is no longer in the log. This approach to fixing mistakes, “rewriting history” with reset,

instead of adding an antipatch with revert, is dangerous, and we don’t recommend it. But you may want to do it for

small silly mistakes, such as to correct a commit message.

Resetting the working area

When git reset removes commits, it leaves your working directory unchanged – so you can keep the work in the bad

change if you want.

If you want to lose the change from the working directory as well, you can do git reset --hard.

I’m going to get rid of the silly spelling, and I didn’t do --hard, so I’ll reset the file from the working

directory to be the same as in the index:

commit f1c705a7c3b89f7b16b4951759b73416a34f5444

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Revert "Add a lie about a mountain"

 This reverts commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546.

commit 72922033c88ac0759a8b62a960008c157d9906bd

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Change title

commit b68a6acb90d4eb0c24b1c8661790a25ec87d5546

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 Add a lie about a mountain

commit ebcfba48e00cdd6273aafa3d4482ac5b560b76ae

Author: Turing Developer <developer@example.com>

Date: 2024-06-03

 First commit of discourse on UK topography

%%bash
cat test.md

Mountains and Hills in the UK

===================

Engerland is not very mountainous.

But has some tall hills, and maybe a

mountain or two depending on your definition.

%%bash
git checkout test.md

We can add this to our diagram:

We can add it to Jim’s story:

4.3 Publishing

Updated 1 path from the index

%%bash
cat test.md

Mountains and Hills in the UK

===================

England is not very mountainous.

But has some tall hills, and maybe a mountain or two depending on your definition.

message = """
Working Directory -> Staging Area : git add
Staging Area -> Local Repository : git commit
Working Directory -> Local Repository : git commit -a
Local Repository -> Working Directory : git checkout
Local Repository -> Staging Area : git reset
Local Repository -> Working Directory: git reset --hard
"""
from wsd import wsd

%matplotlib inline
wsd(message)

message = """
participant "Jim's repo" as R
participant "Jim's index" as I
participant Jim as J

note right of J: git revert HEAD~

J->R: Add new commit reversing change
R->I: update staging area to reverted version
I->J: update file to reverted version

note right of J: vim test.md
note right of J: git commit -am "Add another mistake"
J->I: Add mistake
I->R: Add mistake

note right of J: git reset HEAD~

J->R: Delete mistaken commit
R->I: Update staging area to reset commit

note right of J: git checkout test.md

R->J: Update file to reverted version
"""
wsd(message)

Estimated time to complete this notebook: 15 minutes

We’re still in our working directory:

Sharing your work

So far, all our work has been on our own computer. But a big part of the point of version control is keeping your

work safe, on remote servers. Another part is making it easy to share your work with the world. In this example,

we’ll be using the GitHub cloud repository to store and publish our work.

If you have not done so already, you should create an account on GitHub: go to https://github.com/, fill in a

username and password, and click on “sign up for free”.

Creating a repository

Ok, let’s create a repository to store our work. Hit “new repository” on the right of the github home screen, or

click here.

Fill in a short name, and a description.

Choose a “public” repository.

Don’t choose to add a README.

GitHub private repositories

For this course, you should use public repositories in your personal account for your example work: it’s good to

share! GitHub is free for open source, but in general, charges a fee if you want to keep your work private.

In the future, you might want to keep your work on GitHub private.

Students can get free private repositories on GitHub, by going to GitHub Education and filling in a form (look for

the Student Developer Pack).

Adding a new remote to your repository

Instructions will appear, once you’ve created the repository, as to how to add this new “remote” server to your

repository. In this example we are using pre-authorised Deploy Keys to connect using the SSH method. If you prefer to

use username and password/token, these instructions will be slightly different:

Note that the https version of this instruction would be something like git remote add origin

https://${YOUR_USERNAME}:${GITHUB_TOKEN}@github.com/alan-turing-institute/github-example.git

Remotes

The first command sets up the server as a new remote, called origin.

Git, unlike some earlier version control systems is a “distributed” version control system, which means you can

work with multiple remote servers.

Usually, commands that work with remotes allow you to specify the remote to use, but assume the origin remote if you

don’t.

Here, git push will push your whole history onto the server, and now you’ll be able to see it on the internet!

Refresh your web browser where the instructions were, and you’ll see your repository!

Let’s add these commands to our diagram:

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)
working_dir

'/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/git_example'

%%bash
git remote add origin git@github.com:alan-turing-institute/github-example.git

%%bash
git remote -v

origin git@github.com:alan-turing-institute/github-example.git (fetch)

origin git@github.com:alan-turing-institute/github-example.git (push)

%%bash
git push -uf origin main # Note we use the '-f' flag here to force an update

To github.com:alan-turing-institute/github-example.git

 + 5ce7e0f...f1c705a main -> main (forced update)

branch 'main' set up to track 'origin/main'.

https://github.com/
https://github.com/new
https://github.com/edu

Playing with GitHub

Take a few moments to click around and work your way through the GitHub interface. Try clicking on ‘test.md’ to see

the content of the file: notice how the markdown renders prettily.

Click on “commits” near the top of the screen, to see all the changes you’ve made. Click on the commit number next

to the right of a change, to see what changes it includes: removals are shown in red, and additions in green.

Working with multiple files

Some new content

So far, we’ve only worked with one file. Let’s add another:

Git will not by default commit your new file

This failed, because we’ve not told git to track the new file yet.

Tell git about the new file

message = """
Working Directory -> Staging Area : git add
Staging Area -> Local Repository : git commit
Working Directory -> Local Repository : git commit -a
Local Repository -> Working Directory : git checkout
Local Repository -> Staging Area : git reset
Local Repository -> Working Directory: git reset --hard
Local Repository -> Remote Repository : git push
"""
from wsd import wsd

%matplotlib inline
wsd(message)

vim lakeland.md

%%writefile lakeland.md
Lakeland
========

Cumbria has some pretty hills, and lakes too.

Writing lakeland.md

cat lakeland.md

Lakeland
========

Cumbria has some pretty hills, and lakes too.

%%bash
git commit -am "Try to add Lakeland" || echo "Commit failed"

On branch main

Your branch is up to date with 'origin/main'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 __pycache__/

 lakeland.md

 wsd.py

nothing added to commit but untracked files present (use "git add" to track)

Commit failed

http://test.md/

Ok, now we have added the change about Cumbria to the file. Let’s publish it to the origin repository.

Visit GitHub, and notice this change is on your repository on the server. We could have said git push origin to

specify the remote to use, but origin is the default.

Changing two files at once

What if we change both files?

These changes should really be separate commits. We can do this with careful use of git add, to stage first one

commit, then the other.

%%bash
git add lakeland.md
git commit -am "Add lakeland"

[main e17737c] Add lakeland

 1 file changed, 4 insertions(+)

 create mode 100644 lakeland.md

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 f1c705a..e17737c main -> main

%%writefile lakeland.md
Lakeland
========

Cumbria has some pretty hills, and lakes too

Mountains:
* Helvellyn

Overwriting lakeland.md

%%writefile test.md
Mountains and Lakes in the UK
===================
Engerland is not very mountainous.
But has some tall hills, and maybe a
mountain or two depending on your definition.

Overwriting test.md

%%bash
git status

On branch main

Your branch is up to date with 'origin/main'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: lakeland.md

 modified: test.md

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 __pycache__/

 wsd.py

no changes added to commit (use "git add" and/or "git commit -a")

%%bash
git add test.md
git commit -m "Include lakes in the scope"

Because we “staged” only test.md, the changes to lakeland.md were not included in that commit.

4.4 Collaboration

Estimated time to complete this notebook: 20 minutes

Form a team

Now we’re going to get to the most important question of all with Git and GitHub: working with others.

Organise into pairs. You’re going to be working on the website of one of the two of you, together, so decide who is

going to be the leader, and who the collaborator.

Giving permission

The leader needs to let the collaborator have the right to make changes to his code.

In GitHub, go to Settings on the right, then Collaborators & teams on the left.

Add the user name of your collaborator to the box. They now have the right to push to your repository.

[main 98879e8] Include lakes in the scope

 1 file changed, 4 insertions(+), 3 deletions(-)

%%bash
git commit -am "Add Helvellyn"

[main c5bf00f] Add Helvellyn

 1 file changed, 4 insertions(+), 1 deletion(-)

%%bash
git log --oneline

c5bf00f Add Helvellyn

98879e8 Include lakes in the scope

e17737c Add lakeland

f1c705a Revert "Add a lie about a mountain"

7292203 Change title

b68a6ac Add a lie about a mountain

ebcfba4 First commit of discourse on UK topography

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 e17737c..c5bf00f main -> main

message = """
participant "Jim's remote" as M
participant "Jim's repo" as R
participant "Jim's index" as I
participant Jim as J

note right of J: vim test.md
note right of J: vim lakeland.md

note right of J: git add test.md
J->I: Add *only* the changes to test.md to the staging area

note right of J: git commit -m "Include lakes"
I->R: Make a commit from currently staged changes: test.md only

note right of J: git commit -am "Add Helvellyn"
J->I: Stage *all remaining* changes, (lakeland.md)
I->R: Make a commit from currently staged changes

note right of J: git push
R->M: Transfer commits to Github
"""
wsd(message)

http://test.md/
http://lakeland.md/

Obtaining a colleague’s code

Next, the collaborator needs to get a copy of the leader’s code. For this example notebook, I’m going to be

collaborating with myself, swapping between my two repositories. Make yourself a space to put it your work. (I will

have two)

Next, the collaborator needs to find out the URL of the repository: they should go to the leader’s repository’s

GitHub page, and note the URL on the top of the screen.

As before, we’re using SSH to connect - to do this you’ll need to make sure the ssh button is pushed, and check that

the URL begins with git@github.com.

Copy the URL into your clipboard by clicking on the icon to the right of the URL, and then:

Note that your partner’s files are now present on your disk:

Nonconflicting changes

Now, both of you should make some changes. To start with, make changes to different files. This will mean your work

doesn’t “conflict”. Later, we’ll see how to deal with changes to a shared file.

Both of you should commit, but not push, your changes to your respective files:

E.g., the leader:

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(git_dir)

%%bash
pwd
rm -rf github-example # cleanup after previous example
rm -rf partner_dir # cleanup after previous example

/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git

%%bash
pwd
git clone git@github.com:alan-turing-institute/github-example.git partner_dir

/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git

Cloning into 'partner_dir'...

partner_dir = os.path.join(git_dir, "partner_dir")
os.chdir(partner_dir)

%%bash
pwd
ls

/home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/partner_dir

lakeland.md

test.md

%%bash
cat lakeland.md

Lakeland

========

Cumbria has some pretty hills, and lakes too

Mountains:

* Helvellyn

os.chdir(working_dir)

%%writefile Wales.md
Mountains In Wales
==================

* Tryfan
* Yr Wyddfa

Writing Wales.md

And the partner:

One of you should now push with git push:

Rejected push

The other should then attempt to push, but should receive an error message:

%%bash
ls

Wales.md

__pycache__

lakeland.md

test.md

wsd.py

%%bash
git add Wales.md
git commit -m "Add wales"

[main 21aac75] Add wales

 1 file changed, 5 insertions(+)

 create mode 100644 Wales.md

os.chdir(partner_dir)

%%writefile Scotland.md
Mountains In Scotland
==================

* Ben Eighe
* Cairngorm

Writing Scotland.md

%%bash
ls

Scotland.md

lakeland.md

test.md

%%bash
git add Scotland.md
git commit -m "Add Scotland"

[main e8ba37f] Add Scotland

 1 file changed, 5 insertions(+)

 create mode 100644 Scotland.md

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 c5bf00f..e8ba37f main -> main

os.chdir(working_dir)

%%bash
git push || echo "Push failed"

Do as it suggests:

Merge commits

A window may pop up with a suggested default commit message. This commit is special: it is a merge commit. It is a

commit which combines your collaborator’s work with your own.

Now, push again with git push. This time it works. If you look on GitHub, you’ll now see that it contains both sets

of changes.

The partner now needs to pull down that commit:

To github.com:alan-turing-institute/github-example.git

 ! [rejected] main -> main (fetch first)

error: failed to push some refs to 'github.com:alan-turing-institute/github-
example.git'

hint: Updates were rejected because the remote contains work that you do not

hint: have locally. This is usually caused by another repository pushing to

hint: the same ref. If you want to integrate the remote changes, use

hint: 'git pull' before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Push failed

%%bash
git pull

From github.com:alan-turing-institute/github-example

 c5bf00f..e8ba37f main -> origin/main

 * [new branch] experiment -> origin/experiment

Merge made by the 'ort' strategy.

 Scotland.md | 5 +++++

 1 file changed, 5 insertions(+)

 create mode 100644 Scotland.md

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 e8ba37f..4eb1827 main -> main

os.chdir(partner_dir)

%%bash
git pull

From github.com:alan-turing-institute/github-example

 e8ba37f..4eb1827 main -> origin/main

Updating e8ba37f..4eb1827

Fast-forward

 Wales.md | 5 +++++

 1 file changed, 5 insertions(+)

 create mode 100644 Wales.md

%%bash
ls

Nonconflicted commits to the same file

Go through the whole process again, but this time, both of you should make changes to a single file, but make sure

that you don’t touch the same line. Again, the merge should work as before:

Scotland.md

Wales.md

lakeland.md

test.md

%%writefile Wales.md
Mountains In Wales
==================

* Tryfan
* Snowdon

Overwriting Wales.md

%%bash
git diff

diff --git a/Wales.md b/Wales.md

index f3e88b4..90f23ec 100644

--- a/Wales.md

+++ b/Wales.md

@@ -2,4 +2,4 @@ Mountains In Wales

 ==================

 * Tryfan

-* Yr Wyddfa

+* Snowdon

%%bash
git commit -am "Translating from the Welsh"

[main 3994359] Translating from the Welsh

 1 file changed, 1 insertion(+), 1 deletion(-)

%%bash
git log --oneline

3994359 Translating from the Welsh

4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

21aac75 Add wales

e8ba37f Add Scotland

c5bf00f Add Helvellyn

98879e8 Include lakes in the scope

e17737c Add lakeland

f1c705a Revert "Add a lie about a mountain"

7292203 Change title

b68a6ac Add a lie about a mountain

ebcfba4 First commit of discourse on UK topography

os.chdir(working_dir)

Switching back to the other partner…

%%writefile Wales.md
Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Yr Wyddfa

Overwriting Wales.md

%%bash
git commit -am "Add a beacon"

[main 042bcf8] Add a beacon

 1 file changed, 1 insertion(+)

%%bash
git log --oneline

042bcf8 Add a beacon

4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

21aac75 Add wales

e8ba37f Add Scotland

c5bf00f Add Helvellyn

98879e8 Include lakes in the scope

e17737c Add lakeland

f1c705a Revert "Add a lie about a mountain"

7292203 Change title

b68a6ac Add a lie about a mountain

ebcfba4 First commit of discourse on UK topography

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 4eb1827..042bcf8 main -> main

os.chdir(partner_dir)

%%bash
git push || echo "Push failed"

To github.com:alan-turing-institute/github-example.git

 ! [rejected] main -> main (fetch first)

error: failed to push some refs to 'github.com:alan-turing-institute/github-
example.git'

hint: Updates were rejected because the remote contains work that you do not

hint: have locally. This is usually caused by another repository pushing to

hint: the same ref. If you want to integrate the remote changes, use

hint: 'git pull' before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Push failed

%%bash
git pull

From github.com:alan-turing-institute/github-example

 4eb1827..042bcf8 main -> origin/main

Auto-merging Wales.md

Merge made by the 'ort' strategy.

 Wales.md | 1 +

 1 file changed, 1 insertion(+)

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 042bcf8..76ce0bb main -> main

%%bash
git log --oneline --graph

* 76ce0bb Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * 042bcf8 Add a beacon

* | 3994359 Translating from the Welsh

|/

* 4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * e8ba37f Add Scotland

* | 21aac75 Add wales

|/

* c5bf00f Add Helvellyn

* 98879e8 Include lakes in the scope

* e17737c Add lakeland

* f1c705a Revert "Add a lie about a mountain"

* 7292203 Change title

* b68a6ac Add a lie about a mountain

* ebcfba4 First commit of discourse on UK topography

os.chdir(working_dir)

%%bash
git pull

From github.com:alan-turing-institute/github-example

 042bcf8..76ce0bb main -> origin/main

Updating 042bcf8..76ce0bb

Fast-forward

 Wales.md | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

%%bash
git log --graph --oneline

Conflicting commits

Finally, go through the process again, but this time, make changes which touch the same line.

* 76ce0bb Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * 042bcf8 Add a beacon

* | 3994359 Translating from the Welsh

|/

* 4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * e8ba37f Add Scotland

* | 21aac75 Add wales

|/

* c5bf00f Add Helvellyn

* 98879e8 Include lakes in the scope

* e17737c Add lakeland

* f1c705a Revert "Add a lie about a mountain"

* 7292203 Change title

* b68a6ac Add a lie about a mountain

* ebcfba4 First commit of discourse on UK topography

message = """
participant Sue as S
participant "Sue's repo" as SR
participant "Shared remote" as M
participant "Jim's repo" as JR
participant Jim as J

note left of S: git clone
M->SR: fetch commits
SR->S: working directory as at latest commit

note left of S: edit Scotland.md
note right of J: edit Wales.md

note left of S: git commit -am "Add scotland"
S->SR: create commit with Scotland file

note right of J: git commit -am "Add wales"
J->JR: create commit with Wales file

note left of S: git push
SR->M: update remote with changes

note right of J: git push
JR-->M: !Rejected change

note right of J: git pull
M->JR: Pull in Sue's last commit, merge histories
JR->J: Add Scotland.md to working directory

note right of J: git push
JR->M: Transfer merged history to remote

"""
from wsd import wsd

%matplotlib inline
wsd(message)

When you pull, instead of offering an automatic merge commit message, it says:

Resolving conflicts

Git couldn’t work out how to merge the two different sets of changes.

You now need to manually resolve the conflict.

%%writefile Wales.md
Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Snowdon
* Fan y Big

Overwriting Wales.md

%%bash
git commit -am "Add another Beacon"
git push

[main 9f43be8] Add another Beacon

 1 file changed, 1 insertion(+)

To github.com:alan-turing-institute/github-example.git

 76ce0bb..9f43be8 main -> main

os.chdir(partner_dir)

%%writefile Wales.md
Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Snowdon
* Glyder Fawr

Overwriting Wales.md

%%bash
git commit -am "Add Glyder"

[main 7d8e015] Add Glyder

 1 file changed, 1 insertion(+)

%%bash
git push || echo "Push failed"

To github.com:alan-turing-institute/github-example.git

 ! [rejected] main -> main (fetch first)

error: failed to push some refs to 'github.com:alan-turing-institute/github-
example.git'

hint: Updates were rejected because the remote contains work that you do not

hint: have locally. This is usually caused by another repository pushing to

hint: the same ref. If you want to integrate the remote changes, use

hint: 'git pull' before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Push failed

%%bash
git pull || echo "Pull failed"

From github.com:alan-turing-institute/github-example

 76ce0bb..9f43be8 main -> origin/main

Auto-merging Wales.md

CONFLICT (content): Merge conflict in Wales.md

Automatic merge failed; fix conflicts and then commit the result.

Pull failed

It has marked the conflicted area:

Manually edit the file, to combine the changes as seems sensible and get rid of the symbols:

Commit the resolved file

Now commit the merged result:

%%bash
cat Wales.md

Mountains In Wales

==================

* Pen y Fan

* Tryfan

* Snowdon

<<<<<<< HEAD

* Glyder Fawr

=======

* Fan y Big

>>>>>>> 9f43be8803e86eb2a810a7b2d849ea1aee0a7e1d

%%writefile Wales.md
Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Snowdon
* Fan y Big
* Glyder Fawr

Overwriting Wales.md

%%bash
git commit -a --no-edit # I added a No-edit for this non-interactive session. You
can edit the commit if you like.

[main b0cfc14] Merge branch 'main' of github.com:alan-turing-institute/github-
example

%%bash
git push

To github.com:alan-turing-institute/github-example.git

 9f43be8..b0cfc14 main -> main

os.chdir(working_dir)

%%bash
git pull

From github.com:alan-turing-institute/github-example

 9f43be8..b0cfc14 main -> origin/main

Updating 9f43be8..b0cfc14

Fast-forward

 Wales.md | 1 +

 1 file changed, 1 insertion(+)

%%bash
cat Wales.md

Distributed VCS in teams with conflicts

Mountains In Wales

==================

* Pen y Fan

* Tryfan

* Snowdon

* Fan y Big

* Glyder Fawr

%%bash
git log --oneline --graph

* b0cfc14 Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * 9f43be8 Add another Beacon

* | 7d8e015 Add Glyder

|/

* 76ce0bb Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * 042bcf8 Add a beacon

* | 3994359 Translating from the Welsh

|/

* 4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * e8ba37f Add Scotland

* | 21aac75 Add wales

|/

* c5bf00f Add Helvellyn

* 98879e8 Include lakes in the scope

* e17737c Add lakeland

* f1c705a Revert "Add a lie about a mountain"

* 7292203 Change title

* b68a6ac Add a lie about a mountain

* ebcfba4 First commit of discourse on UK topography

The Levels of Git

Editing directly on GitHub

Note that you can also make changes in the GitHub website itself. Visit one of your files, and hit “edit”.

Make a change in the edit window, and add an appropriate commit message.

That change now appears on the website, but not in your local copy. (Verify this).

message = """
participant Sue as S
participant "Sue's repo" as SR
participant "Shared remote" as M
participant "Jim's repo" as JR
participant Jim as J

note left of S: edit the same line in wales.md
note right of J: edit the same line in wales.md

note left of S: git commit -am "update wales.md"
S->SR: add commit to local repo

note right of J: git commit -am "update wales.md"
J->JR: add commit to local repo

note left of S: git push
SR->M: transfer commit to remote

note right of J: git push
JR->M: !Rejected

note right of J: git pull
M->J: Make conflicted file with conflict markers

note right of J: edit file to resolve conflicts
note right of J: git add wales.md
note right of J: git commit
J->JR: Mark conflict as resolved

note right of J: git push
JR->M: Transfer merged history to remote

note left of S: git pull
M->SR: Download Jim's resolution of conflict.

"""

wsd(message)

message = """
Working Directory -> Staging Area : git add
Staging Area -> Local Repository : git commit
Local Repository -> Local Repository : git commit -a
Local Repository -> Working Directory : git checkout
Local Repository -> Staging Area : git reset
Local Repository -> Working Directory: git reset --hard
Local Repository -> Remote Repository : git push
Remote Repository -> Local Repository : git fetch
Local Repository -> Working Directory : git merge
Remote Repository -> Working Directory: git pull
"""

wsd(message)

Now pull, and check the change is now present on your local version.

GitHub as a social network

In addition to being a repository for code, and a way to publish code, GitHub is a social network.

You can follow the public work of other coders: go to the profile of your collaborator in your browser, and hit the

“follow” button.

Here’s mine : if you want to you can follow me.

Using GitHub to build up a good public profile of software projects you’ve worked on is great for your CV!

4.5 Fork and Pull

Estimated time to complete this notebook: 10 minutes

Different ways of collaborating

We have just seen how we can work with others on GitHub: we add them as collaborators on our repositories and give

them permissions to push changes.

Let’s talk now about some other type of collaboration.

Imagine you are a user of an Open Source project like Numpy and find a bug in one of their methods.

You can inspect and clone Numpy’s code in GitHub https://github.com/numpy/numpy, play around a bit and find how to

fix the bug.

Numpy has done so much for you asking nothing in return, that you really want to contribute back by fixing the bug

for them.

You make all of the changes but you can’t push it back to Numpy’s repository because you don’t have permissions.

The right way to do this is forking Numpy’s repository.

Forking a repository on GitHub

By forking a repository, all you do is make a copy of it in your GitHub account, where you will have write

permissions as well.

If you fork Numpy’s repository, you will find a new repository in your GitHub account that is an exact copy of

Numpy. You can then clone it to your computer, work locally on fixing the bug and push the changes to your fork of

Numpy.

Once you are happy with with the changes, GitHub also offers you a way to notify Numpy’s developers of this changes

so that they can include them in the official Numpy repository via starting a Pull Request.

Pull Request

You can create a Pull Request and select those changes that you think can be useful for fixing Numpy’s bug.

Numpy’s developers will review your code and make comments and suggestions on your fix. Then, you can commit more

improvements in the pull request for them to review and so on.

Once Numpy’s developers are happy with your changes, they’ll accept your Pull Request and merge the changes into

their original repository, for everyone to use.

Practical example - Team up!

We will be working in the same repository with one of you being the leader and the other being the collaborator.

Collaborators need to go to the leader’s GitHub profile and find the repository we created for that lesson. Mine is

in https://github.com/alan-turing-institute/github-example

1. Fork repository

You will see on the top right of the page a Fork button with an accompanying number indicating how many GitHub

users have forked that repository.

Collaborators need to navigate to the leader’s repository and click the Fork button.

Collaborators: note how GitHub has redirected you to your own GitHub page and you are now looking at an exact copy

of the team leader’s repository.

2. Clone your forked repo

Collaborators: go to your terminal and clone the newly created fork.

3. Create a feature branch

It’s a good practice to create a new branch that’ll contain the changes we want. We’ll learn more about branches

later on. For now, just think of this as a separate area where our changes will be kept not to interfere with other

people’s work.

(Be sure to first navigate to the cloned directory, or git commands will not use this repository: cd github-example)

4. Make, commit and push changes to new branch

For example, let’s create a new file called SouthWest.md and edit it to add this text:

git clone git@github.com:alan-turing-institute/github-example.git

git checkout -b southwest

https://github.com/jamespjh
https://github.com/numpy/numpy
https://github.com/alan-turing-institute/github-example

Save it, and push this changes to your fork’s new branch:

5. Create Pull Request

Go back to the collaborator’s GitHub site and reload the fork. GitHub has noticed there is a new branch and is

presenting us with a green button to Compare & pull request. Fantastic! Click that button.

Fill in the form with additional information about your change, as you consider necesary to make the team leader

understand what this is all about.

Take some time to inspect the commits and the changes you are submitting for review. When you are ready, click on

the Create Pull Request button.

Now, the leader needs to go to their GitHub site. They have been notified there is a pull request in their repo

awaiting revision.

6. Feedback from team leader

Leaders can see the list of pull requests in the vertical menu of the repo, on the right hand side of the screen.

Select the pull request the collaborator has done, and inspect the changes.

There are three tabs: in one you can start a conversation with the collaborator about their changes, and in the

others you can have a look at the commits and changes made.

Go to the tab labeled as “Files Changed”. When you hover over the changes, a small + button appears. Select one

line you want to make a comment on. For example, the line that contains “Exmoor”.

GitHub allows you to add a comment about that specific part of the change. Your collaborator has forgotten to add a

title at the beginning of the file right before “Exmoor”, so tell them so in the form presented after clicking the

+ button.

7. Fixes by collaborator

Collaborators will be notified of this comment by email and also in their profiles page. Click the link

accompanying this notification to read the comment from the team leader.

Go back to your local repository, make the changes suggested and push them to the new branch.

Add this at the beginning of your file:

Then push the change to your fork:

This change will automatically be added to the pull request you started.

8. Leader accepts pull request

The team leader will be notified of the new changes that can be reviewed in the same fashion as earlier.

Let’s assume the team leader is now happy with the changes.

Leaders can see in the “Conversation” tab of the pull request a green button labelled Merge pull request. Click it

and confirm the decision.

The collaborator’s pull request has been accepted and appears now in the original repository owned by the team

leader.

Fork and Pull Request done!

Some Considerations

Fork and Pull Request are things happening only on the repository’s server side (GitHub in our case).

Consequently, you can’t do things like git fork or git pull-request from the local copy of a repository.

You don’t always need to fork repositories with the intention of contributing. You can fork a library you use,

install it manually on your computer, and add more functionality or customise the existing one, so that it is

more useful for you and your team.

Numpy’s example is only illustrative. Normally, Open Source projects have in their documentation (sometimes in

the form of a wiki) a set of instructions you need to follow if you want to contribute to their software.

Pull Requests can also be done for merging branches in a non-forked repository. It’s typically used in teams to

merge code from a branch into the master branch and ask team colleagues for code reviews before merging.

It’s a good practice before starting a fork and a pull request to have a look at existing forks and pull

requests. On GitHub, you can find the list of pull requests on the horizontal menu on the top of the page. Try

to also find the network graph displaying all existing forks of a repo, like this example in the NumpyDoc repo:

https://github.com/numpy/numpydoc/network

4.6 Git Theory

Estimated time to complete this notebook: 5 minutes

The revision Graph

Revisions form a GRAPH

* Exmoor
* Dartmoor
* Bodmin Moor

git add SouthWest.md
git commit -m "The South West is also hilly."
git push origin southwest

Hills in the South West:
=======================

git add .
git commit -m "Titles added as requested."
git push origin southwest

https://github.com/numpy/numpydoc/network

Git concepts

Each revision has a parent that it is based on

These revisions form a graph

Each revision has a unique hash code

In Sue’s copy, revision 43 is ab3578d6

Jim might think that is revision 38, but it’s still ab3579d6

Branches, tags, and HEAD are labels pointing at revisions

Some operations (like fast forward merges) just move labels.

The levels of Git

There are four Separate levels a change can reach in git:

The Working Copy

The index (aka staging area)

The local repository

The remote repository

Understanding all the things git reset can do requires a good grasp of git theory.

git reset <commit> <filename> : Reset index and working version of that file to the version in a given commit

git reset --soft <commit>: Move local repository branch label to that commit, leave working dir and index

unchanged

git reset <commit>: Move local repository and index to commit (”–mixed”)

git reset --hard <commit>: Move local repostiory, index, and working directory copy to that state

4.7 Branches

Estimated time to complete this notebook: 10 minutes

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)

%%bash
git log --graph --oneline

* b0cfc14 Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * 9f43be8 Add another Beacon

* | 7d8e015 Add Glyder

|/

* 76ce0bb Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * 042bcf8 Add a beacon

* | 3994359 Translating from the Welsh

|/

* 4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

|\

| * e8ba37f Add Scotland

* | 21aac75 Add wales

|/

* c5bf00f Add Helvellyn

* 98879e8 Include lakes in the scope

* e17737c Add lakeland

* f1c705a Revert "Add a lie about a mountain"

* 7292203 Change title

* b68a6ac Add a lie about a mountain

* ebcfba4 First commit of discourse on UK topography

Branches are incredibly important to why git is cool and powerful.

They are an easy and cheap way of making a second version of your software, which you work on in parallel, and pull

in your changes when you are ready.

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)

%%bash
git branch # Tell me what branches exist

* main

%%bash
git checkout -b experiment # Make a new branch

Switched to a new branch 'experiment'

%%bash
git branch

* experiment

 main

%%writefile Wales.md
Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Snowdon
* Glyder Fawr
* Fan y Big
* Cadair Idris

Overwriting Wales.md

%%bash
git commit -am "Add Cadair Idris"

[experiment bfc566d] Add Cadair Idris

 1 file changed, 2 insertions(+), 1 deletion(-)

%%bash
git checkout main # Switch to an existing branch

Switched to branch 'main'

Your branch is up to date with 'origin/main'.

%%bash
cat Wales.md

Mountains In Wales

==================

* Pen y Fan

* Tryfan

* Snowdon

* Fan y Big

* Glyder Fawr

%%bash
git checkout experiment

Switched to branch 'experiment'

cat Wales.md

Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Snowdon
* Glyder Fawr
* Fan y Big
* Cadair Idris

Publishing branches

To let the server know there’s a new branch use:

We use --set-upstream origin (Abbreviation -u) to tell git that this branch should be pushed to and pulled from origin

per default.

If you are following along, you should be able to see your branch in the list of branches in GitHub.

Once you’ve used git push -u once, you can push new changes to the branch with just a git push.

If others checkout your repository, they will be able to do git checkout experiment to see your branch content, and

collaborate with you in the branch.

Local branches can be, but do not have to be, connected to remote branches They are said to “track” remote

branches. push -u sets up the tracking relationship. You can see the remote branch for each of your local branches

if you ask for “verbose” output from git branch:

Find out what is on a branch

In addition to using git diff to compare to the state of a branch, you can use git log to look at lists of commits

which are in a branch and haven’t been merged yet.

Git uses various symbols to refer to sets of commits. The double dot A..B means “ancestor of B and not ancestor of

A”

%%bash
git push -u origin experiment

To github.com:alan-turing-institute/github-example.git

 ! [rejected] experiment -> experiment (non-fast-forward)

error: failed to push some refs to 'github.com:alan-turing-institute/github-
example.git'

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. If you want to integrate the remote changes,

hint: use 'git pull' before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

CalledProcessError Traceback (most recent call last)
Cell In[11], line 1
----> 1 get_ipython().run_cell_magic('bash', '', 'git push -u origin
experiment\n')

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/IPython/core/interactiveshell.py:2478, in
InteractiveShell.run_cell_magic(self, magic_name, line, cell)
 2476 with self.builtin_trap:
 2477 args = (magic_arg_s, cell)
-> 2478 result = fn(*args, **kwargs)
 2480 # The code below prevents the output from being displayed
 2481 # when using magics with decodator @output_can_be_silenced
 2482 # when the last Python token in the expression is a ';'.
 2483 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/IPython/core/magics/script.py:153, in ScriptMagics._make_script_magic.
<locals>.named_script_magic(line, cell)
 151 else:
 152 line = script
--> 153 return self.shebang(line, cell)

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/IPython/core/magics/script.py:305, in ScriptMagics.shebang(self, line,
cell)
 300 if args.raise_error and p.returncode != 0:
 301 # If we get here and p.returncode is still None, we must have
 302 # killed it but not yet seen its return code. We don't wait for it,
 303 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL
 304 rc = p.returncode or -9
--> 305 raise CalledProcessError(rc, cell)

CalledProcessError: Command 'b'git push -u origin experiment\n'' returned non-zero
exit status 1.

%%bash
git branch -r

 origin/experiment
 origin/main

%%bash
git branch -vv

* experiment a4378e5 [origin/experiment] Add Cadair Idris
 main 85b2797 [origin/main] Merge branch 'main' of github.com:alan-turing-
institute/github-example

%%bash
git log main..experiment

commit a4378e56a723f2ba662262f94108a74be5f896f0
Author: Turing Developer <developer@example.com>
Date: Mon Nov 8 14:06:02 2021 +0000

 Add Cadair Idris

So in a purely linear sequence, it does what you’d expect.

But in cases where a history has branches, the definition in terms of ancestors is important.

If there are changes on both sides, like this:

Then this notation is useful to show the content of what’s on what branch:

Three dots means “everything which is not a common ancestor” of the two commits, i.e. the differences between them.

Merging branches

We can merge branches, and just as we would pull in remote changes, there may or may not be conflicts.

%%bash
git log --graph --oneline HEAD~9..HEAD~5

* 34f8bbb Merge branch 'main' of github.com:alan-turing-institute/github-example
|\
| * 289afed Add Scotland
* | 0c976b0 Add wales
|/
* 82b4fa0 Add Helvellyn
* 6ff088f Include lakes in the scope

%%bash
git log --graph --oneline HEAD~5..HEAD

* a4378e5 Add Cadair Idris
* 85b2797 Merge branch 'main' of github.com:alan-turing-institute/github-example
|\
| * ed30178 Add another Beacon
* | bc04a83 Add Glyder
|/
* ecc3206 Merge branch 'main' of github.com:alan-turing-institute/github-example
|\
| * 8cd684e Add a beacon
* b8fb6c5 Translating from the Welsh

%%bash
git checkout main

Your branch is up to date with 'origin/main'.

Switched to branch 'main'

%%writefile Scotland.md
Mountains In Scotland
==================

* Ben Eighe
* Cairngorm
* Aonach Eagach

Overwriting Scotland.md

%%bash
git diff Scotland.md

diff --git a/Scotland.md b/Scotland.md
index 9613dda..bf5c643 100644
--- a/Scotland.md
+++ b/Scotland.md
@@ -3,3 +3,4 @@ Mountains In Scotland

 * Ben Eighe
 * Cairngorm
+* Aonach Eagach

%%bash
git commit -am "Commit Aonach onto main branch"

[main 537950c] Commit Aonach onto main branch
 1 file changed, 1 insertion(+)

%%bash
git log --left-right --oneline main...experiment

< 537950c Commit Aonach onto main branch
> a4378e5 Add Cadair Idris

%%bash
git branch
git merge experiment

 experiment
* main
Merge made by the 'recursive' strategy.
 Wales.md | 3 ++-
 1 file changed, 2 insertions(+), 1 deletion(-)

%%bash
git log --graph --oneline HEAD~3..HEAD

* 2365c66 Merge branch 'experiment'
|\
| * a4378e5 Add Cadair Idris
* | 537950c Commit Aonach onto main branch
|/
* 85b2797 Merge branch 'main' of github.com:alan-turing-institute/github-example
* ed30178 Add another Beacon

Cleaning up after a branch

A good branch strategy

A production or main branch: the current working version of your code

A develop branch: where new code can be tested

feature branches: for specific new ideas

release branches: when you share code with others

Useful for applying bug fixes to older versions of your code

Grab changes from a branch

Make some changes on one branch, switch back to another, and use:

to quickly grab a file from one branch into another. This will create a copy of the file as it exists in <branch>

into your current branch, overwriting it if it already existed. For example, if you have been experimenting in a

new branch but want to undo all your changes to a particular file (that is, restore the file to its version in the

main branch), you can do that with:

Using git checkout with a path takes the content of files. To grab the content of a specific commit from another

branch, and apply it as a patch to your branch, use:

4.8 Advanced git concepts
Estimated time to complete this notebook: 15 minutes

Stashing changes

Before you can git pull, you need to have committed any changes you have made. If you find you want to pull, but

you’re not ready to commit, you have to temporarily “put aside” your uncommitted changes. For this, you can use the

git stash command, like in the following example:

Remind ourselves which branch we are using:

%%bash
git branch # list branches

 experiment
* main

%%bash
git branch -d experiment # delete a branch

Deleted branch experiment (was a4378e5).

%%bash
git branch # current branch

* main

%%bash
git branch --remote # list remote branches

 origin/experiment
 origin/main

%%bash
git push --delete origin experiment
Remove remote branch. Note that you can also use the GitHub interface to do
this.

To github.com:alan-turing-institute/github-example.git
 - [deleted] experiment

%%bash
git branch --remote # list remote branches

 origin/main

%%bash
git push

To github.com:alan-turing-institute/github-example.git
 85b2797..2365c66 main -> main

%%bash
git branch # current branch

* main 2365c66 [origin/main] Merge branch 'experiment'

git checkout <branch> <path>

git checkout main test_file

git cherry-pick <commit>

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)

By stashing your work first, your repository becomes clean, allowing you to pull. To restore your changes, use git

stash apply.

%%bash
git branch -vv

* experiment bfc566d Add Cadair Idris

 main b0cfc14 [origin/main] Merge branch 'main' of github.com:alan-turing-
institute/github-example

%%writefile Wales.md
Mountains In Wales
==================

* Pen y Fan
* Tryfan
* Snowdon
* Glyder Fawr
* Fan y Big
* Cadair Idris
* Penygader

Overwriting Wales.md

%%bash
git stash

Saved working directory and index state WIP on experiment: bfc566d Add Cadair
Idris

%%bash
git pull

There is no tracking information for the current branch.

Please specify which branch you want to merge with.

See git-pull(1) for details.

 git pull <remote> <branch>

If you wish to set tracking information for this branch you can do so with:

 git branch --set-upstream-to=origin/<branch> experiment

CalledProcessError Traceback (most recent call last)
Cell In[5], line 1
----> 1 get_ipython().run_cell_magic('bash', '', 'git pull\n')

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/IPython/core/interactiveshell.py:2478, in
InteractiveShell.run_cell_magic(self, magic_name, line, cell)
 2476 with self.builtin_trap:
 2477 args = (magic_arg_s, cell)
-> 2478 result = fn(*args, **kwargs)
 2480 # The code below prevents the output from being displayed
 2481 # when using magics with decodator @output_can_be_silenced
 2482 # when the last Python token in the expression is a ';'.
 2483 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/IPython/core/magics/script.py:153, in ScriptMagics._make_script_magic.
<locals>.named_script_magic(line, cell)
 151 else:
 152 line = script
--> 153 return self.shebang(line, cell)

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/IPython/core/magics/script.py:305, in ScriptMagics.shebang(self, line,
cell)
 300 if args.raise_error and p.returncode != 0:
 301 # If we get here and p.returncode is still None, we must have
 302 # killed it but not yet seen its return code. We don't wait for it,
 303 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL
 304 rc = p.returncode or -9
--> 305 raise CalledProcessError(rc, cell)

CalledProcessError: Command 'b'git pull\n'' returned non-zero exit status 1.

%%bash
git stash apply

The “Stash” is a way of temporarily saving your working area, and can help out in a pinch.

Tagging

Tags are easy to read labels for revisions, and can be used anywhere we would name a commit.

Produce real results only with tagged revisions.

NB: we delete previous tags with the same name remotely and locally first, to avoid duplicates.

You can also use tag names in the place of commmit hashes, such as to list the history between particular commits:

If .. is used without a following commit name, HEAD is assumed.

Ignoring files

We often end up with files that are generated by our program. It is bad practice to keep these in Git; just keep

the sources.

Examples include .o and .x files for compiled languages, .pyc files in Python.

In our example, we might want to make our .md files into a PDF with rinohtype:

We now have a bunch of output .pdf files corresponding to each Markdown file.

But we don’t want those to show up in git:

On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: Wales.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 __pycache__/
 wsd.py

no changes added to commit (use "git add" and/or "git commit -a")

git tag -a v1.0 -m "Release 1.0"
git push --tags

git log v1.0.. --graph --oneline

%%writefile Makefile

MDS=$(wildcard *.md)
PDFS=$(MDS:.md=.pdf)

default: $(PDFS)

%.pdf: %.md
 rinoh $< 2> /dev/null
 rm $(basename $@).rtc $(basename $@).stylelog

Writing Makefile

%%bash
make

rinoh Scotland.md 2> /dev/null
Using the CommonMark frontend [built-in]
rinohtype 0.5.4 (2022-06-17) Copyright (c) Brecht Machiels and contributors
This program comes with ABSOLUTELY NO WARRANTY. Its use is subject
to the terms of the GNU Affero General Public License version 3.
100% [==] ETA 00:00 (00:00) page 3
Not yet converged, rendering again...
100% [==] ETA 00:00 (00:00) page 3
Writing output: Scotland.pdf
rm Scotland.rtc Scotland.stylelog
rinoh Wales.md 2> /dev/null
Using the CommonMark frontend [built-in]
rinohtype 0.5.4 (2022-06-17) Copyright (c) Brecht Machiels and contributors
This program comes with ABSOLUTELY NO WARRANTY. Its use is subject
to the terms of the GNU Affero General Public License version 3.
100% [==] ETA 00:00 (00:00) page 3
Not yet converged, rendering again...
100% [==] ETA 00:00 (00:00) page 3
Writing output: Wales.pdf
rm Wales.rtc Wales.stylelog
rinoh lakeland.md 2> /dev/null
Using the CommonMark frontend [built-in]
rinohtype 0.5.4 (2022-06-17) Copyright (c) Brecht Machiels and contributors
This program comes with ABSOLUTELY NO WARRANTY. Its use is subject
to the terms of the GNU Affero General Public License version 3.
100% [==] ETA 00:00 (00:00) page 3
Not yet converged, rendering again...
100% [==] ETA 00:00 (00:00) page 3
Writing output: lakeland.pdf
rm lakeland.rtc lakeland.stylelog
rinoh test.md 2> /dev/null
Using the CommonMark frontend [built-in]
rinohtype 0.5.4 (2022-06-17) Copyright (c) Brecht Machiels and contributors
This program comes with ABSOLUTELY NO WARRANTY. Its use is subject
to the terms of the GNU Affero General Public License version 3.
100% [==] ETA 00:00 (00:00) page 3
Not yet converged, rendering again...
100% [==] ETA 00:00 (00:00) page 3
Writing output: test.pdf
rm test.rtc test.stylelog

%%bash
git status

https://www.mos6581.org/rinohtype/master/

Use .gitignore files to tell Git not to pay attention to files with certain paths:

Cleaning your directory

Sometimes you end up creating various files that you do not want to include in version control. An easy way of

deleting them (if that is what you want) is the git clean command, which will remove the files that git is not

tracking.

With -f: don’t prompt

with -d: remove directories

with -x: Also remove .gitignored files

with -X: Only remove .gitignored files

Hunks

Git hunks

A “hunk” is one git change. This changeset has three hunks:

On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: Wales.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 Makefile
 Scotland.pdf
 Wales.pdf
 __pycache__/
 lakeland.pdf
 test.pdf
 wsd.py

no changes added to commit (use "git add" and/or "git commit -a")

%%writefile .gitignore
*.pdf

Writing .gitignore

%%bash
git status

On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: Wales.md

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 .gitignore
 Makefile
 __pycache__/
 wsd.py

no changes added to commit (use "git add" and/or "git commit -a")

%%bash
git add Makefile
git add .gitignore
git commit -am "Add a makefile and ignore generated files"
git push

[main c8ba483] Add a makefile and ignore generated files
 3 files changed, 12 insertions(+), 1 deletion(-)
 create mode 100644 .gitignore
 create mode 100644 Makefile

To github.com:alan-turing-institute/github-example.git
 537950c..c8ba483 main -> main

%%bash
git clean -fX

Removing Scotland.pdf
Removing Wales.pdf
Removing lakeland.pdf
Removing test.pdf

%%bash
ls

Makefile
Scotland.md
Wales.md
__pycache__
lakeland.md
test.md
wsd.py

Interactive add

git add and git reset can be used to stage/unstage a whole file, but you can use interactive mode to stage by hunk,

choosing yes or no for each hunk.

4.9 Publishing from GitHub

Estimated time to complete this notebook: 5 minutes

GitHub pages

Yaml Frontmatter

GitHub will publish repositories containing markdown as web pages, automatically.

You’ll need to add this content:

A pair of lines with three dashes, to the top of each markdown file. This is how GitHub knows which markdown files

to make into web pages. Here’s why for the curious.

The gh-pages branch

GitHub creates github pages when you use a special named branch. By default this is gh-pages although you can change

it to something else if you prefer. This is best used to create documentation for a program you write, but you can

use it for anything.

The first time you do this, GitHub takes a few minutes to generate your pages.

The website will appear at http://username.github.io/repositoryname, for example:

+import matplotlib
+import numpy as np

 from matplotlib import pylab
 from matplotlib.backends.backend_pdf import PdfPages

+def increment_or_add(key,hash,weight=1):
+ if key not in hash:
+ hash[key]=0
+ hash[key]+=weight
+
 data_path=os.path.join(os.path.dirname(
 os.path.abspath(__file__)),
-regenerate=False
+regenerate=True

git add -p myfile.py

+import matplotlib
+import numpy as np
#Stage this hunk [y,n,a,d,/,j,J,g,e,?]?

%%writefile test.md

title: Github Pages Example

Mountains and Lakes in the UK
===================

Engerland is not very mountainous.
But has some tall hills, and maybe a mountain or two depending on your definition.

Writing test.md

%%bash
git commit -am "Add github pages YAML frontmatter"

[main 10c6caf8] Add github pages YAML frontmatter

 2 files changed, 0 insertions(+), 0 deletions(-)

os.chdir(working_dir)

NameError Traceback (most recent call last)
Cell In[3], line 1
----> 1 os.chdir(working_dir)

NameError: name 'os' is not defined

%%bash

git checkout -b gh-pages
git push -uf origin gh-pages

Branch 'gh-pages' set up to track remote branch 'gh-pages' from 'origin'.

Switched to a new branch 'gh-pages'
remote:
remote: Create a pull request for 'gh-pages' on GitHub by visiting:
remote: https://github.com/alan-turing-institute/github-example/pull/new/gh-
pages
remote:
To github.com:alan-turing-institute/github-example.git
 * [new branch] gh-pages -> gh-pages

https://jekyllrb.com/docs/front-matter/

http://alan-turing-institute.github.io/github-example/

Layout for GitHub pages

You can use GitHub pages to make HTML layouts, here’s an example of how to do it, and how it looks. We won’t go

into the detail of this now, but after the class, you might want to try this.

4.10 Rebasing

Estimated time to complete this notebook: 10 minutes

Rebase vs merge

A git merge is only one of two ways to get someone else’s work into yours. The other is called a rebase.

In a merge, a revision is added, which brings the branches together. Both histories are retained. In a rebase, git

tries to work out

What would you need to have done, to make your changes, if your colleague had already made theirs?

Git will invent some new revisions, and the result will be a repository with an apparently linear history. This can

be useful if you want a cleaner, non-branching history, but it has the risk of creating inconsistencies, since you

are, in a way, “rewriting” history.

An example rebase

We’ve built a repository to help visualise the difference between a merge and a rebase, at https://github.com/UCL-

RITS/wocky_rebase/blob/master/wocky.md.

The initial state of both collaborators is a text file, wocky.md:

On the master branch, a second commit (‘Dancing’) has been added:

On the “Carollian” branch, a commit has been added translating the initial state into Lewis Caroll’s language:

So the logs look like this:

If we now merge carollian into master, the final state will include both changes:

But the graph shows a divergence and then a convergence:

But if we rebase, the final content of the file is still the same, but the graph is different:

%%bash
Cleanup by removing the gh-pages branch
git checkout main
git push
git branch -d gh-pages
git push --delete origin gh-pages
git branch --remote

Your branch is ahead of 'origin/main' by 1 commit.
 (use "git push" to publish your local commits)
Deleted branch gh-pages (was 12ee6ad).
 origin/main

Switched to branch 'main'
To github.com:alan-turing-institute/github-example.git
 c8ba483..12ee6ad main -> main
To github.com:alan-turing-institute/github-example.git
 - [deleted] gh-pages

It was clear and cold,
and the slimy monsters

It was clear and cold,
and the slimy monsters
danced and spun in the waves

'Twas brillig,
and the slithy toves

git log --oneline --graph master

* 2a74d89 Dancing
* 6a4834d Initial state

git log --oneline --graph carollian

* 2232bf3 Translate into Caroll's language
* 6a4834d Initial state

'Twas brillig,
and the slithy toves
danced and spun in the waves

git log --oneline --graph

* b41f869 Merge branch 'carollian' into master_merge_carollian
|\
| * 2232bf3 Translate into Caroll's language
* | 2a74d89 Dancing
|/
* 6a4834d Initial state

git log --oneline --graph master_rebase_carollian

http://alan-turing-institute.github.io/github-example/
http://github.com/UCL/ucl-github-pages-example
http://ucl.github.io/ucl-github-pages-example
https://github.com/UCL-RITS/wocky_rebase/blob/master/wocky.md
http://wocky.md/

We have essentially created a new history, in which our changes come after the ones in the carollian branch. Note

that, in this case, the hash for our “Dancing” commit has changed (from 2a74d89 to df618e0)!

To trigger the rebase, we did:

If this had been a remote, we would merge it with:

Fast Forwards

If we want to continue with the translation, and now want to merge the rebased branch into the carollian branch, we

get:

The master branch was already rebased on the carollian branch, so this merge was just a question of updating

metadata (moving the label for the carollian branch so that it points to the same commit master does): a “fast

forward”.

Rebasing pros and cons

Some people like the clean, apparently linear history that rebase provides.

But rebase rewrites history.

If you’ve already pushed, or anyone else has got your changes, things will get screwed up.

If you know your changes are still secret, it might be better to rebase to keep the history clean. If in doubt,

just merge.

Squashing

A second way to use the git rebase command is to rebase your work on top of one of your own earlier commits, in

interactive mode (-i). A common use of this is to “squash” several commits that should really be one, i.e. combine

them into a single commit that contains all their changes:

Using rebase to squash

If we type

an edit window pops up with:

We can rewrite select commits to be merged, so that the history is neater before we push. This is a great idea if

you have lots of trivial typo commits.

save the interactive rebase config file, and rebase will build a new history:

Note the commit hash codes for ‘Some good work’ and ‘A great piece of work’ have changed, as the change they

represent has changed.

* df618e0 Dancing
* 2232bf3 Translate into Caroll's language
* 6a4834d Initial state

git checkout master
git rebase carollian

git pull --rebase

git checkout carollian
git merge master

Updating 2232bf3..df618e0
Fast-forward
 wocky.md | 1 +
 1 file changed, 1 insertion(+)

git log

ea15 Some good work
ll54 Fix another typo
de73 Fix a typo
ab11 A great piece of work
cd27 Initial commit

git rebase -i ab11 # OR HEAD~~

pick cd27 Initial commit
pick ab11 A great piece of work
pick de73 Fix a typo
pick ll54 Fix another typo
pick ea15 Some good work

Rebase 60709da..30e0ccb onto 60709da

Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit

pick cd27 Initial commit
pick ab11 A great piece of work
squash de73 Fix a typo
squash ll54 Fix another typo
pick ea15 Some good work

git log

de82 Some good work
fc52 A great piece of work
cd27 Initial commit

4.11 Debugging With git bisect

Estimated time to complete this notebook: 5 minutes

You can use

to find out which commit caused a bug.

An example repository

In a nice open source example, I found an arbitrary exemplar on github

This has been set up to break itself at a random commit, and leave you to use bisect to work out where it has

broken:

Which will make a bunch of commits, of which one is broken, and leave you in the broken final state

Bisecting manually

Bisect needs one known good and one known bad commit to get started

Solving Manually

git bisect

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
os.chdir(git_dir)

%%bash
rm -rf bisectdemo
git clone https://github.com/shawnsi/bisectdemo.git

Cloning into 'bisectdemo'...

bisect_dir = os.path.join(git_dir, "bisectdemo")
os.chdir(bisect_dir)

%%bash
python squares.py 2 # 4

4

%%bash
./breakme.sh > break_output

error: branch 'buggy' not found

Switched to a new branch 'buggy'

python squares.py 2 # Error message

 Cell In[6], line 1
 python squares.py 2 # Error message
 ^
SyntaxError: invalid syntax

%%bash
git bisect start
git bisect bad # We know the current state is broken
git checkout master
git bisect good # We know the master branch state is OK

status: waiting for both good and bad commits

status: waiting for good commit(s), bad commit known

Switched to branch 'master'

Your branch is up to date with 'origin/master'.

Bisecting: 500 revisions left to test after this (roughly 9 steps)

[0aa4efcb51fa5a886649cba0ccfa45c91a3e105b] Comment 499

python squares.py 2 # 4
git bisect good
python squares.py 2 # 4
git bisect good
python squares.py 2 # 4
git bisect good
python squares.py 2 # Crash
git bisect bad
python squares.py 2 # Crash
git bisect bad
python squares.py 2 # Crash
git bisect bad
python squares.py 2 #Crash
git bisect bad
python squares.py 2 # 4
git bisect good
python squares.py 2 # 4
git bisect good
python squares.py 2 # 4
git bisect good

And eventually:

Solving automatically

If we have an appropriate unit test, we can do all this automatically:

git bisect good
 Bisecting: 0 revisions left to test after this (roughly 0 steps)

python squares.py 2
 4

git bisect good
2777975a2334c2396ccb9faf98ab149824ec465b is the first bad commit
commit 2777975a2334c2396ccb9faf98ab149824ec465b
Author: Shawn Siefkas <shawn.siefkas@meredith.com>
Date: Thu Nov 14 09:23:55 2013 -0600

 Breaking argument type

git bisect end

%%bash
git bisect start
git bisect bad HEAD # We know the current state is broken
git bisect good master # We know master is good
git bisect run python squares.py 2

Previous HEAD position was 0aa4efc Comment 499

Switched to branch 'buggy'

status: waiting for both good and bad commits

status: waiting for good commit(s), bad commit known

Bisecting: 500 revisions left to test after this (roughly 9 steps)

[0aa4efcb51fa5a886649cba0ccfa45c91a3e105b] Comment 499

running 'python' 'squares.py' '2'

Traceback (most recent call last):

 File "squares.py", line 9, in <module>

 print(integer**2)

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

Bisecting: 249 revisions left to test after this (roughly 8 steps)

[d96770fee9bf916845322375883f688691464c1d] Comment 249

running 'python' 'squares.py' '2'

Traceback (most recent call last):

 File "squares.py", line 9, in <module>

 print(integer**2)

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

Bisecting: 124 revisions left to test after this (roughly 7 steps)

[c74ec6b56a334ba995d5025d38372f965cff6f72] Comment 125

running 'python' 'squares.py' '2'

4

Bisecting: 62 revisions left to test after this (roughly 6 steps)

[5146321e3e607dbc68e46c0886397fa9d3e024c1] Comment 187

running 'python' 'squares.py' '2'

4

Bisecting: 31 revisions left to test after this (roughly 5 steps)

[841dcff9178483fb1183398f3102b5a3b9bd68b6] Comment 218

running 'python' 'squares.py' '2'

4

Bisecting: 15 revisions left to test after this (roughly 4 steps)

[a38d37e57fa565ee6eb8e1868f466306570887ea] Comment 234

running 'python' 'squares.py' '2'

4

Bisecting: 7 revisions left to test after this (roughly 3 steps)

[5d913df23b72c54ef829e37304295866169b7643] Comment 241

running 'python' 'squares.py' '2'

Traceback (most recent call last):

 File "squares.py", line 9, in <module>

Boom!

4.12 Working with multiple remotes

Estimated time to complete this notebook: 10 minutes

Distributed versus centralised

Older version control systems (cvs, svn) were “centralised”; the history was kept only on a server, and all commits

required an internet.

Centralised Distributed

Server has history Every user has full history

Your computer has one snapshot Many local branches

To access history, need internet History always available

You commit to remote server Users synchronise histories

cvs, subversion(svn) git, mercurial (hg), bazaar (bzr)

With modern distributed systems, we can add a second remote. This might be a personal fork on github:

 print(integer**2)

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

Bisecting: 3 revisions left to test after this (roughly 2 steps)

[ea2e455d3e74586ffbf89f68cf536adcf223413d] Comment 237

running 'python' 'squares.py' '2'

Traceback (most recent call last):

 File "squares.py", line 9, in <module>

 print(integer**2)

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

Bisecting: 1 revision left to test after this (roughly 1 step)

[11a9abefdaf402ac311229d40e3b130bf9c0f064] Comment 236

running 'python' 'squares.py' '2'

4

Bisecting: 0 revisions left to test after this (roughly 0 steps)

[be81c4415aca931c9f6e7b8c791cbbea49353eac] Breaking argument type

running 'python' 'squares.py' '2'

Traceback (most recent call last):

 File "squares.py", line 9, in <module>

 print(integer**2)

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

be81c4415aca931c9f6e7b8c791cbbea49353eac is the first bad commit

commit be81c4415aca931c9f6e7b8c791cbbea49353eac

Author: Shawn Siefkas <shawn.siefkas@meredith.com>

Date: Thu Nov 14 09:23:55 2013 -0600

 Breaking argument type

 squares.py | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

bisect found first bad commit

Check your remote branches:

and ensure that the newly-added remote is up-to-date

We can specify which remote to push to by name:

… but note that you need to have the correct permissions to do so.

import os

top_dir = os.getcwd()
git_dir = os.path.join(top_dir, "learning_git")
working_dir = os.path.join(git_dir, "git_example")
os.chdir(working_dir)

%%bash
git checkout main
git remote add jack89roberts git@github.com:jack89roberts/github-example.git
git fetch jack89roberts

Switched to branch 'main'

Your branch is up to date with 'origin/main'.

From github.com:jack89roberts/github-example

 * [new branch] main -> jack89roberts/main

 * [new branch] master -> jack89roberts/master

%%bash
git remote -v

jack89roberts git@github.com:jack89roberts/github-example.git (fetch)

jack89roberts git@github.com:jack89roberts/github-example.git (push)

origin git@github.com:alan-turing-institute/github-example.git (fetch)

origin git@github.com:alan-turing-institute/github-example.git (push)

%%bash
git fetch jack89roberts

%%writefile Pennines.md

Mountains In the Pennines
========================

* Cross Fell
* Whernside

Writing Pennines.md

%%bash
git add Pennines.md
git commit -am "Add Whernside"

[main 966488d] Add Whernside

 1 file changed, 6 insertions(+)

 create mode 100644 Pennines.md

%%bash
git push -uf jack89roberts main || echo "Push failed"

ERROR: Permission to jack89roberts/github-example.git denied to deploy key

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

Push failed

%%bash
git push -uf origin main

To github.com:alan-turing-institute/github-example.git

 b0cfc14..966488d main -> main

branch 'main' set up to track 'origin/main'.

Referencing remotes

You can always refer to commits on a remote like this:

%%bash
git fetch
git log --oneline --left-right jack89roberts/main...origin/main

> 966488d Add Whernside

> b0cfc14 Merge branch 'main' of github.com:alan-turing-institute/github-example

> 7d8e015 Add Glyder

> 9f43be8 Add another Beacon

> 76ce0bb Merge branch 'main' of github.com:alan-turing-institute/github-example

> 3994359 Translating from the Welsh

> 042bcf8 Add a beacon

> 4eb1827 Merge branch 'main' of github.com:alan-turing-institute/github-example

> 21aac75 Add wales

> e8ba37f Add Scotland

> c5bf00f Add Helvellyn

> 98879e8 Include lakes in the scope

> e17737c Add lakeland

> f1c705a Revert "Add a lie about a mountain"

> 7292203 Change title

> b68a6ac Add a lie about a mountain

> ebcfba4 First commit of discourse on UK topography

< 31ea056 Add Whernside

< 009f998 Add github pages YAML frontmatter

< 2f9bcc8 Add a makefile and ignore generated files

< ae539cc Merge branch 'experiment' into main

< 492fec5 Commit Aonach onto main branch

< fe1c71d Add Cadair Idris

< 338d4d6 Merge branch 'main' of https://github.com/alan-turing-institute/github-
example into main

< 07c4fea Add Glyder

< c405c4d Add another Beacon

< f8f20a6 Merge branch 'main' of https://github.com/alan-turing-institute/github-
example into main

< 1f69c3f Translating from the Welsh

< b2b4fa3 Add a beacon

< c1897d4 Merge branch 'main' of https://github.com/alan-turing-institute/github-
example into main

< 0e96c25 Add wales

< 0de6b80 Add Scotland

< 959e142 Add Helvellyn

< 600ffe1 Include lakes in the scope

< c7454a7 Add lakeland

< 5342922 Revert "Add a lie about a mountain"

< f65fd0b Change title

< 8c467a3 Add a lie about a mountain

To see the differences between remotes, for example.

To see what files you have changed that aren’t updated on a particular remote, for example:

When you reference remotes like this, you’re working with a cached copy of the last time you interacted with the

remote. You can do git fetch to update local data with the remotes without actually pulling. You can also get useful

information about whether tracking branches are ahead or behind the remote branches they track:

Hosting Servers

Hosting a local server

Any repository can be a remote for pulls

Can pull/push over shared folders or ssh

Pushing to someone’s working copy is dangerous

Use git init --bare to make a copy for pushing

You don’t need to create a “server” as such, any ‘bare’ git repo will do.

Check your remote branches:

You can now work with this local repository, just as with any other git server. If you have a colleague on a shared

file system, you can use this approach to collaborate through that file system.

Home-made SSH servers

Classroom exercise: Try creating a server for yourself using a machine you can SSH to:

SSH keys and GitHub
Classroom exercise: If you haven’t already, you should set things up so that you don’t have to keep typing in your

password whenever you interact with GitHub via the command line.

< 1f92929 First commit of discourse on UK topography

%%bash
git diff --name-only origin/main

%%bash
git branch -vv

 experiment bfc566d Add Cadair Idris

* main 966488d [origin/main] Add Whernside

bare_dir = os.path.join(git_dir, "bare_repo")
os.chdir(git_dir)

%%bash
mkdir -p bare_repo
rm -rf bare_repo/*
cd bare_repo
git init --bare --initial-branch=main

Initialized empty Git repository in /home/runner/work/rse-course/rse-
course/module04_version_control_with_git/learning_git/bare_repo/

os.chdir(working_dir)

%%bash
git remote add local_bare ../bare_repo
git push -u local_bare main

To ../bare_repo

 * [new branch] main -> main

branch 'main' set up to track 'local_bare/main'.

%%bash
git remote -v

jack89roberts git@github.com:jack89roberts/github-example.git (fetch)

jack89roberts git@github.com:jack89roberts/github-example.git (push)

local_bare ../bare_repo (fetch)

local_bare ../bare_repo (push)

origin git@github.com:alan-turing-institute/github-example.git (fetch)

origin git@github.com:alan-turing-institute/github-example.git (push)

ssh <mymachine>
mkdir mygitserver
cd mygitserver
git init --bare
exit
git remote add <somename> ssh://user@host/mygitserver
git push -u <somename> master

You can do this with an “ssh keypair”. You may have created a keypair in the Software Carpentry shell training. Go

to the ssh settings page on GitHub and upload your public key by copying the content from your computer. (Probably

at .ssh/id_rsa.pub)

If you have difficulties, the instructions for this are on the GitHub website.

5. Testing
Why test?

Unit testing and regression testing

Negative testing

Mocking

Debugging

Continuous Integration

Contents

5.0 Introduction to testing (5 minutes)

5.1 How to test (15 minutes)

5.2 Testing frameworks (15 minutes)

5.3 Classroom exercise: energy calculation (30 minutes)

5.4 Mocking (15 minutes)

5.5 Using a debugger (10 minutes)

5.6 Continuous integration (5 minutes)

5.7 Recap example: Monte-Carlo (30 minutes)

Total time: 2 hrs 5 minutes

Exercises

Classroom exercises are included inline in the modules. We recommend that instructors schedule the exercises to be

done in groups during breaks in the taught content. However, it is important that participants also have some time

away from their screens. Exercises can also be left as self-paced homework assignments if preferred.

5.0 Testing

Estimated time for this notebook: 5 minutes

Introduction

As we write code, we want to be sure that it does behaves the way we’d like it to - so we test it. Testing (and re-

testing) our code is something that needs to be done regularly (ideally after every change to the code),

comprehensively, quickly and reliably. In short testing is an task that is ideally suited to automation.

We write additional code to test the behaviour for our main code. We use these terms to distinguish between the two

types of code:

“Production code” - the code that fulfills the purpose of the software, and is run by the end user.

“Test code” - additional code only used by software development team

For this module we are focusing on automated testing.

A few reasons not to do testing

Sensibility Sense

It’s boring Maybe

Code is just a one off throwaway As with most research codes

No time for it A bit more code, a lot less debugging

Tests can be buggy too See above

Not a professional programmer See above

Will do it later See above

A few reasons to do testing

lazyness testing saves time

peace of mind tests (should) ensure code is correct

runnable specification best way to let others know what a function should do and not do

reproducible debugging debugging that happened and is saved for later reuse

code structure / modularity since the code is designed for at least two situations

easier to modify since results can be tested

Not a panacea

“Trying to improve the quality of software by doing more testing is like trying to lose weight by

weighting yourself more often.” - Steve McConnell

Testing won’t correct a buggy code

Testing will tell you were the bugs are…

… if (and only if) the test cases cover the scenarios that cause the bugs or occur.

Also, automated tests only test a narrow interpretation of quality software development. They do not help test that

your software is useful and help solves a users’ problem. We will touch on this again in Module 06.

Tests at different scales

https://github.com/settings/ssh
https://help.github.com/articles/generating-ssh-keys

Level of

test
Area covered by test Notes

Unit

testing

smallest logical block

of work (often < 10

lines of code)

Unit tests should run fast (eg ~1/100th sec) so that they can be re-run

regularly (eg every git commit). To achieve this they should not invoke

network access or substantial disk access.

Component

testing

several logical blocks

of work together

These can be useful where you need to tease out the expected/useful behaviour

of 3rd party libraries.

Integration

testing

all components together

/ whole program
These can take longer to run, and can be run less often.

When writing new code (see below) always start by creating tests at the smallest scale (unit tests).

If a unit test is too complicated to write, then consider adjusting your production code (possibly by breaking

it down into smaller, individually testable functions). Ensuring that your production code is easy to test is a

healthy habit.

Legacy code hardening

Very difficult to create unit-tests for existing code

Instead we make a regression test

Run program as a black box:

Does not test correctness of code

Checks code is as similarly wrong on day N as day 0

Testing vocabulary

fixture: input data

action: function that is being tested

expected result: the output that should be obtained

actual result: the output that is obtained

coverage: proportion of all possible paths in the code that the tests take

Branch coverage:

Is there a test for both energy > 0 and energy <= 0?

5.1 How to test

Estimated time for this notebook: 15 minutes

Choosing the scenarios to test - “Equivalence partitioning”

Think hard about the different cases the code will run under: this is science, not coding!

We can’t write a test for every possible input: this is an infinite amount of work.

We need to write tests to rule out different bugs. There’s no need to separately test equivalent inputs.

Let’s look at an example of this question outside of coding:

Research Project : Evolution of agricultural fields in Saskatchewan from aerial photography

In silico translation : Compute overlap of two rectangles

Let’s make a little fragment of matplotlib code to visualise a pair of fields.

setup input
run program
read output
check output against expected result

if energy > 0:
 ! Do this
else:
 ! Do that

%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib import patches
from matplotlib.path import Path

def show_fields(field1, field2):
 def vertices(left, bottom, right, top):
 verts = [
 (left, bottom),
 (left, top),
 (right, top),
 (right, bottom),
 (left, bottom),
]
 return verts

 codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]
 path1 = Path(vertices(*field1), codes)
 path2 = Path(vertices(*field2), codes)
 fig = plt.figure()
 ax = fig.add_subplot(111)
 patch1 = patches.PathPatch(path1, facecolor="orange", lw=2)
 patch2 = patches.PathPatch(path2, facecolor="blue", lw=2)
 ax.add_patch(patch1)
 ax.add_patch(patch2)
 ax.set_xlim(0, 5)
 ax.set_ylim(0, 5)

show_fields((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 3.0))

Here, we can see that the area of overlap, is the same as the smaller field, with area 1.

We could now go ahead and write a subroutine to calculate that, and also write some test cases for our answer.

But first, let’s just consider that question abstractly, what other cases, not equivalent to this might there be?

For example, this case, is still just a full overlap, and is sufficiently equivalent that it’s not worth another

test:

But this case is no longer a full overlap, and should be tested separately:

On a piece of paper, sketch now the other cases you think should be treated as non-equivalent. Some answers are

below:

show_fields((1.0, 1.0, 4.0, 4.0), (2.5, 1.7, 3.2, 3.4))

show_fields((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 4.5))

for _ in range(50):
 print("Spoiler space")

Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space
Spoiler space

show_fields((1.0, 1.0, 4.0, 4.0), (2, 2, 4.5, 4.5)) # Overlap corner

show_fields((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 4.0)) # Just touching

show_fields((1.0, 1.0, 4.0, 4.0), (4.5, 4.5, 5, 5)) # No overlap

Using our tests

OK, so how might our tests be useful?

Here’s some code that might correctly calculate the area of overlap:

So how do we check our code?

The manual approach would be to look at some cases, and, once, run it and check:

That looks OK.

But we can do better - we don’t want to have to manually check our results. We can use the assert statement for

this:

If <some statement> evaluate to True carry on. If not, raise an error.

show_fields((1.0, 1.0, 4.0, 4.0), (2.5, 4, 3.5, 4.5)) # Just touching from
outside

show_fields((1.0, 1.0, 4.0, 4.0), (4, 4, 4.5, 4.5)) # Touching corner

def overlap(field1, field2):
 left1, bottom1, top1, right1 = field1
 left2, bottom2, top2, right2 = field2
 overlap_left = max(left1, left2)
 overlap_bottom = max(bottom1, bottom2)
 overlap_right = min(right1, right2)
 overlap_top = min(top1, top2)
 overlap_height = overlap_top - overlap_bottom
 overlap_width = overlap_right - overlap_left
 return overlap_height * overlap_width

overlap((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 3.0))

1.0

assert <some statement>

assert overlap((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 3.0)) == 1.0

What? Why is this wrong?

In our calculation, we are actually getting:

Both width and height are negative, resulting in a positive area. The above code didn’t take into account the non-

overlap correctly.

It should be:

Note, we reran our other tests, to check our fix didn’t break something else. (We call that “fallout”)

Boundary cases

“Boundary cases” are an important area to test:

Limit between two equivalence classes: edge and corner sharing fields

Wherever indices appear, check values at 0, N, N+1

Empty arrays:

What happens if atoms is an empty list?

What happens when a matrix/data-frame reaches one row, or one column?

Positive and negative tests

Positive tests: code should give correct answer with various inputs

Negative tests: code should behave appropriately* given invalid inputs, rather than lying

*(It is up to you to decide what is “appropriate” behaviour in your context.)

Bad input should be expected and should fail early and explicitly.

Testing should ensure that explicit failures do indeed happen.

assert overlap((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 4.5)) == 2.0

assert overlap((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 4.5, 4.5)) == 4.0

assert overlap((1.0, 1.0, 4.0, 4.0), (4.5, 4.5, 5, 5)) == 0.0

AssertionError Traceback (most recent call last)
Cell In[16], line 1
----> 1 assert overlap((1.0, 1.0, 4.0, 4.0), (4.5, 4.5, 5, 5)) == 0.0

AssertionError:

print(overlap((1.0, 1.0, 4.0, 4.0), (4.5, 4.5, 5, 5)))

0.25

show_fields((1.0, 1.0, 4.0, 4.0), (4.5, 4.5, 5, 5))

overlap_left = 4.5
overlap_right = 4
overlap_width = -0.5
overlap_height = -0.5

def overlap(field1, field2):
 left1, bottom1, top1, right1 = field1
 left2, bottom2, top2, right2 = field2

 overlap_left = max(left1, left2)
 overlap_bottom = max(bottom1, bottom2)
 overlap_right = min(right1, right2)
 overlap_top = min(top1, top2)

 overlap_height = max(0, (overlap_top - overlap_bottom))
 overlap_width = max(0, (overlap_right - overlap_left))

 return overlap_height * overlap_width

assert overlap((1, 1, 4, 4), (2, 2, 3, 3)) == 1.0
assert overlap((1, 1, 4, 4), (2, 2, 3, 4.5)) == 2.0
assert overlap((1, 1, 4, 4), (2, 2, 4.5, 4.5)) == 4.0
assert overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5)) == 0.0
assert overlap((1, 1, 4, 4), (2.5, 4, 3.5, 4.5)) == 0.0
assert overlap((1, 1, 4, 4), (4, 4, 4.5, 4.5)) == 0.0

 atoms = [read_input_atom(input_atom) for input_atom in input_file]
 energy = force_field(atoms)

Raising exceptions

In Python, we can signal an error state by raising an error:

There are standard “Exception” types, like ValueError we can raise (more on this in Module 08.03)

We would like to be able to write tests like this:

But to do that, we need to learn about more sophisticated testing tools, called “test frameworks”.

A note on Test-Driven Development (TDD)

In the overlapping fields example above we planned some of our test scenarios before writing the overlap function.

This is an example of “Test-Driven Development (TDD)”. This was a particularly fashionable approach to development

a few years ago. Some TDD advocates have taken an uncompromising approach which has led to it slightly falling out

of favour more recently. However, it is worth retaining the benefits that caused its initial popularity.

In its “purest”/uncompromising form:

Always write and commit your tests before the related production code.

Always write tests to cover every line of your production code (we’ll cover how to measure this in the next

module).

A more pragmatic interpretation might be:

Write your tests simultaneously with your production code.

Allow your tests to affect the design of your production code - i.e. ensure that your production code is

testable.

When you are stuck, break down the problem into smaller, testable stages.

Ensure that your tests cover (i) the core function of the software and (ii) any input sanity checking.

5.2 Testing frameworks

Estimated time for this notebook: 15 minutes

Why use testing frameworks?

Frameworks should simplify our lives:

Should be easy to add simple test

Should be possible to create complex test:

Fixtures

Setup/Tear down

Parameterized tests (same test, mostly same input)

Find all our tests in a complicated code-base

Run all our tests with a quick command

Run only some tests, e.g. test --only "tests about fields"

Report failing tests

Additional goodies, such as code coverage

Common testing frameworks

Language agnostic: CTest

Test runner for executables, bash scripts, etc…

Great for legacy code hardening

C unit-tests:

all c++ frameworks,

Check,

CUnit

C++ unit-tests:

CppTest,

Boost::Test,

google-test,

Catch

Python unit-tests:

unittest comes with standard python library

pytest, includes test discovery, coverage, etc

R unit-tests:

RUnit,

def I_only_accept_positive_numbers(number):
 # Check input
 if number < 0:
 raise ValueError("Input " + str(number) + " is negative")

 # Do something

I_only_accept_positive_numbers(5)

I_only_accept_positive_numbers(-5)

ValueError Traceback (most recent call last)
Cell In[24], line 1
----> 1 I_only_accept_positive_numbers(-5)

Cell In[22], line 4, in I_only_accept_positive_numbers(number)
 1 def I_only_accept_positive_numbers(number):
 2 # Check input
 3 if number < 0:
----> 4 raise ValueError("Input " + str(number) + " is negative")

ValueError: Input -5 is negative

assert I_only_accept_positive_numbers(-5) == # Gives a value error

https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://libcheck.github.io/check/
http://cunit.sourceforge.net/
http://cpptest.sourceforge.net/
https://www.boost.org/doc/libs/1_79_0/libs/test/doc/html/index.html
https://google.github.io/googletest/
https://github.com/catchorg/Catch2
https://docs.python.org/3/library/unittest.html
http://pytest.org/latest/
https://cran.r-project.org/web/packages/RUnit/index.html

testthat

Fortran unit-tests:

pfunit(works with MPI)

pytest framework: usage

pytest is a recommended python testing framework.

We can use its tools in the notebook for on-the-fly tests in the notebook. This, happily, includes the negative-

tests example we were looking for a moment ago.

but the real power comes when we write a test file alongside our code files in our homemade packages:

def I_only_accept_positive_numbers(number):
 # Check input
 if number < 0:
 raise ValueError("Input " + str(number) + " is negative")

 # Do something

from pytest import raises

with raises(ValueError):
 I_only_accept_positive_numbers(-5)

%%bash
#on windows replace '%%bash' with %%cmd
rm -rf saskatchewan
mkdir -p saskatchewan
touch saskatchewan/__init__.py #on windows replace with 'type nul >
saskatchewan/__init__.py'

%%writefile saskatchewan/overlap.py
def overlap(field1, field2):
 left1, bottom1, top1, right1 = field1
 left2, bottom2, top2, right2 = field2

 overlap_left = max(left1, left2)
 overlap_bottom = max(bottom1, bottom2)
 overlap_right = min(right1, right2)
 overlap_top = min(top1, top2)
 # Here's our wrong code again
 overlap_height = overlap_top - overlap_bottom
 overlap_width = overlap_right - overlap_left

 return overlap_height * overlap_width

Writing saskatchewan/overlap.py

%%writefile saskatchewan/test_overlap.py
from .overlap import overlap

def test_full_overlap():
 assert overlap((1.0, 1.0, 4.0, 4.0), (2.0, 2.0, 3.0, 3.0)) == 1.0

def test_partial_overlap():
 assert overlap((1, 1, 4, 4), (2, 2, 3, 4.5)) == 2.0

def test_no_overlap():
 assert overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5)) == 0.0

Writing saskatchewan/test_overlap.py

%%bash
#%%cmd #(windows)
cd saskatchewan
pytest || echo "Tests failed"

https://testthat.r-lib.org/
https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://docs.pytest.org/en/latest/

Note that it reported which test had failed, how many tests ran, and how many failed.

The symbol ..F means there were three tests, of which the third one failed.

Pytest will:

automagically finds files test_*.py

collects all subroutines called test_*

runs tests and reports results

Some options:

help: pytest --help

run only tests for a given feature: pytest -k foo # tests with ‘foo’ in the test name

Coverage reports

Using pytest it is possisble to see, which lines of code have or haven’t been execuded by you tests.

The command below will produce a html files which highlights the coverage of your tests.

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/saskatchewan

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 3 items

test_overlap.py ..F [100%]

=================================== FAILURES ===================================

_______________________________ test_no_overlap ________________________________

 def test_no_overlap():

> assert overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5)) == 0.0

E assert 0.25 == 0.0

E + where 0.25 = overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5))

test_overlap.py:13: AssertionError

=========================== short test summary info ============================

FAILED test_overlap.py::test_no_overlap - assert 0.25 == 0.0

 + where 0.25 = overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5))

========================= 1 failed, 2 passed in 0.10s ==========================

Tests failed

%%bash
#%%cmd #(windows)
cd saskatchewan
pytest --cov=. --cov-report=html || echo "Tests failed"
MacOS:
open htmlcov/index.html

Testing with floating points

Floating points are not reals

Floating points are inaccurate representations of real numbers:

1.0 == 0.99999999999999999 is true to the last bit.

This can lead to numerical errors during calculations:

Both results are wrong: 2e-13 is the correct answer.

The size of the error will depend on the magnitude of the floating points:

The result should be 2e-8.

Comparing floating points

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/saskatchewan

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 3 items

test_overlap.py ..F [100%]

=================================== FAILURES ===================================

_______________________________ test_no_overlap ________________________________

 def test_no_overlap():

> assert overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5)) == 0.0

E assert 0.25 == 0.0

E + where 0.25 = overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5))

test_overlap.py:13: AssertionError

---------- coverage: platform linux, python 3.8.18-final-0 -----------

Coverage HTML written to dir htmlcov

=========================== short test summary info ============================

FAILED test_overlap.py::test_no_overlap - assert 0.25 == 0.0

 + where 0.25 = overlap((1, 1, 4, 4), (4.5, 4.5, 5, 5))

========================= 1 failed, 2 passed in 0.09s ==========================

Tests failed

1000(a − b) ≠ 1000a − 1000b

1000.0 * 1.0 - 1000.0 * 0.9999999999999998

2.2737367544323206e-13

1000.0 * (1.0 - 0.9999999999999998)

2.220446049250313e-13

1000.0 * 1e5 - 1000.0 * 0.9999999999999998e5

1.4901161193847656e-08

Use the “approx”, for a default of a relative tolerance of

Or be more explicit:

Choosing tolerances is a big area of debate: https://software-carpentry.org/blog/2014/10/why-we-dont-teach-

testing.html

Comparing vectors of floating points

Numerical vectors are best represented using numpy.

Numpy ships with a number of assertions (in numpy.testing) to make comparison easy:

It compares the difference between actual and expected to atol + rtol * abs(expected).

5.3 Classroom exercise: energy calculation

Estimated time for this notebook: 30 minutes

Diffusion model in 1D

Description: A one-dimensional diffusion model. (Could be a gas of particles, or a bunch of crowded people in a

corridor, or animals in a valley habitat…)

Agents are on a 1d axis

Agents do not want to be where there are other agents

This is represented as an ‘energy’: the higher the energy, the more unhappy the agents.

Implementation:

Given a vector of positive integers, and of arbitrary length

Compute the energy,

Later, we will have the likelyhood of an agent moving depend on the change in energy.

Here, the total energy due to position 2 is , and due to column 7 is . We need to sum these to

get the total energy.

Starting point

Create a Python module:

Windows: You will need to run the following instead

10−6

from pytest import approx

assert 0.7 == approx(0.7 + 1e-7)

magnitude = 0.7
assert 0.7 == approx(0.701, rel=0.1, abs=0.1)

from numpy import array, pi

vector_of_reals = array([0.1, 0.2, 0.3, 0.4]) * pi

from numpy import array, pi
from numpy.testing import assert_allclose

expected = array([0.1, 0.2, 0.3, 0.4, 1e-12]) * pi
actual = array([0.1, 0.2, 0.3, 0.4, 2e-12]) * pi
actual[:-1] += 1e-6
assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)

n

E(n) = ∑i ni(ni − 1)

%matplotlib inline
import numpy as np
from matplotlib import pyplot as plt

density = np.array([0, 0, 3, 5, 8, 4, 2, 1])
fig, ax = plt.subplots()
ax.bar(np.arange(len(density)) - 0.5, density)
ax.xrange = [-0.5, len(density) - 0.5]
ax.set_ylabel("Particle count n_i")
ax.set_xlabel("Position i")

Text(0.5, 0, 'Position i')

3(3 − 1) = 6 1(1 − 1) = 0

%%bash
rm -rf diffusion
mkdir diffusion
touch diffusion/__init__.py

https://software-carpentry.org/blog/2014/10/why-we-dont-teach-testing.html
http://www.numpy.org/

NB. If you are using the Windows command prompt, you will also have to replace all subsequent %%bash directives with

%%cmd

Implementation file: diffusion_model.py

Testing file: test_diffusion_model.py

Invoke the tests:

Now, write your code (in model.py), and tests (in test_model.py), testing as you do.

Solution

Don’t look until after you’ve tried!

In the spirit of test-driven development let’s first consider our tests.

%%cmd
rmdir /s diffusion
mkdir diffusion
type nul > diffusion/__init__.py

%%writefile diffusion/model.py
def energy(density, coeff=1.0):
 """Energy associated with the diffusion model

 Parameters

 density: array of positive integers
 Number of particles at each position i in the array
 coeff: float
 Diffusion coefficient.
 """
 # implementation goes here

Writing diffusion/model.py

%%writefile diffusion/test_model.py
from .model import energy

def test_energy():
 pass
 # Test something

Writing diffusion/test_model.py

%%bash
cd diffusion
pytest

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/diffusion

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 1 item

test_model.py . [100%]

============================== 1 passed in 0.01s ===============================

Now let’s write an implementation that passes the tests.

%%writefile diffusion/test_model.py
"""Unit tests for a diffusion model."""

from pytest import raises
from .model import energy

def test_energy_fails_on_non_integer_density():
 with raises(TypeError):
 energy([1.0, 2, 3])

def test_energy_fails_on_negative_density():
 with raises(ValueError):
 energy([-1, 2, 3])

def test_energy_fails_ndimensional_density():
 with raises(ValueError):
 energy([[1, 2, 3], [3, 4, 5]])

def test_zero_energy_cases():
 # Zero energy at zero density
 densities = [[], [0], [0, 0, 0]]
 for density in densities:
 assert energy(density) == 0

def test_derivative():
 from numpy.random import randint

 # Loop over vectors of different sizes (but not empty)
 for vector_size in randint(1, 1000, size=30):

 # Create random density of size N
 density = randint(50, size=vector_size)

 # will do derivative at this index
 element_index = randint(vector_size)

 # modified densities
 density_plus_one = density.copy()
 density_plus_one[element_index] += 1

 # Compute and check result
 # d(n^2-1)/dn = 2n
 expected = 2.0 * density[element_index] if density[element_index] > 0 else
0
 actual = energy(density_plus_one) - energy(density)
 assert expected == actual

def test_derivative_no_self_energy():
 """If particle is alone, then its participation to energy is zero."""
 from numpy import array

 density = array([1, 0, 1, 10, 15, 0])
 density_plus_one = density.copy()
 density[1] += 1

 expected = 0
 actual = energy(density_plus_one) - energy(density)
 assert expected == actual

Overwriting diffusion/test_model.py

%%writefile diffusion/model.py
"""Simplistic 1-dimensional diffusion model."""
from numpy import array, any, sum

def energy(density):
 """Energy associated with the diffusion model
 :Parameters:
 density: array of positive integers
 Number of particles at each position i in the array/geometry
 """

 # Make sure input is an numpy array
 density = array(density)

 # ...of the right kind (integer). Unless it is zero length,
 # in which case type does not matter.

 if density.dtype.kind != "i" and len(density) > 0:
 raise TypeError("Density should be a array of *integers*.")
 # and the right values (positive or null)
 if any(density < 0):
 raise ValueError("Density should be an array of *positive* integers.")
 if density.ndim != 1:
 raise ValueError(
 "Density should be an a *1-dimensional*" + "array of positive
integers."
)

 return sum(density * (density - 1))

Overwriting diffusion/model.py

%%bash
cd diffusion
pytest

Coverage

With pytest, you can use the “pytest-cov” plugin to measure test coverage

Or an html report:

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/diffusion

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 6 items

test_model.py [100%]

============================== 6 passed in 0.09s ===============================

%%bash
cd diffusion
pytest --cov

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/diffusion

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 6 items

test_model.py [100%]

---------- coverage: platform linux, python 3.8.18-final-0 -----------

Name Stmts Miss Cover

__init__.py 0 0 100%

model.py 10 0 100%

test_model.py 33 0 100%

TOTAL 43 0 100%

============================== 6 passed in 0.14s ===============================

%%bash
#%%cmd (windows)
cd diffusion
pytest --cov --cov-report html

https://github.com/pytest-dev/pytest-cov

The HTML coverage results will be in diffusion/htmlcov/index.html

5.4 Mocking

Estimated time for this notebook: 15 minutes

Definition

Mock: verb,

1. to tease or laugh at in a scornful or contemptuous manner

2. to make a replica or imitation of something

Mocking

Replace a real object with a pretend object, which records how it is called, and can assert if it is called

wrong

Mocking frameworks

C: CMocka

C++: googlemock

Python: unittest.mock

Recording calls with mock

Mock objects record the calls made to them:

The arguments of each call can be recovered

Mock objects can return different values for each call

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/diffusion

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 6 items

test_model.py [100%]

---------- coverage: platform linux, python 3.8.18-final-0 -----------

Coverage HTML written to dir htmlcov

============================== 6 passed in 0.16s ===============================

from unittest.mock import Mock

function = Mock(name="myroutine", return_value=2)

function(1)

2

function(5, "hello", a=True)

2

function.mock_calls

[call(1), call(5, 'hello', a=True)]

name, args, kwargs = function.mock_calls[1]
args, kwargs

((5, 'hello'), {'a': True})

function = Mock(name="myroutine", side_effect=[2, "xyz"])

function(1)

2

http://www.cmocka.org/
https://google.github.io/googletest/reference/mocking.html
http://docs.python.org/dev/library/unittest.mock

We expect an error if there are no return values left in the list:

Using mocks to model test resources

Often we want to write tests for code which interacts with remote resources. (E.g. databases, the internet, or data

files.)

We don’t want to have our tests actually interact with the remote resource, as this would mean our tests failed due

to lost internet connections, for example.

Instead, we can use mocks to assert that our code does the right thing in terms of the messages it sends: the

parameters of the function calls it makes to the remote resource.

For example, consider the following code that downloads a map from the internet:

We would like to test that it is building the parameters correctly. We can do this by mocking the requests object.

We need to temporarily replace a method in the library with a mock. We can use “patch” to do this:

Our tests then look like:

function(1, "hello", {"a": True})

'xyz'

function()

StopIteration Traceback (most recent call last)
Cell In[9], line 1
----> 1 function()

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/unittest/mock.py:1081,
in CallableMixin.__call__(self, *args, **kwargs)
 1079 self._mock_check_sig(*args, **kwargs)
 1080 self._increment_mock_call(*args, **kwargs)
-> 1081 return self._mock_call(*args, **kwargs)

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/unittest/mock.py:1085,
in CallableMixin._mock_call(self, *args, **kwargs)
 1084 def _mock_call(self, /, *args, **kwargs):
-> 1085 return self._execute_mock_call(*args, **kwargs)

File /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/unittest/mock.py:1142,
in CallableMixin._execute_mock_call(self, *args, **kwargs)
 1140 raise effect
 1141 elif not _callable(effect):
-> 1142 result = next(effect)
 1143 if _is_exception(result):
 1144 raise result

StopIteration:

import requests

def map_at(lat, long, satellite=False, zoom=12, size=(400, 400)):
 base = "https://static-maps.yandex.ru/1.x/?"
 params = dict(
 z=zoom,
 size=str(size[0]) + "," + str(size[1]),
 ll=str(long) + "," + str(lat),
 l="sat" if satellite else "map",
 lang="en_US",
)
 return requests.get(base, params=params, timeout=60)

london_map = map_at(51.5073509, -0.1277583)

%matplotlib inline
import IPython

IPython.core.display.Image(london_map.content)

from unittest.mock import patch

with patch.object(requests, "get") as mock_get:
 london_map = map_at(51.5073509, -0.1277583)
 print(mock_get.mock_calls)

[call('https://static-maps.yandex.ru/1.x/?', params={'z': 12, 'size': '400,400',
'll': '-0.1277583,51.5073509', 'l': 'map', 'lang': 'en_US'}, timeout=60)]

That was quiet, so it passed. When I’m writing tests, I usually modify one of the expectations, to something

‘wrong’, just to check it’s not passing “by accident”, run the tests, then change it back!

Testing functions that call other functions

We want to test that the above function does the right thing. It is supposed to compute the derivative of a

function of a vector in a particular direction.

E.g.:

How do we assert that it is doing the right thing? With tests like this:

We made our mock a “Magic Mock” because otherwise, the mock results f_x_plus_delta and f_x can’t be subtracted:

5.5 Using a debugger

Estimated time for this notebook: 10 minutes

Stepping through the code

Debuggers are programs that can be used to test other programs. They allow programmers to suspend execution of the

target program and inspect variables at that point.

Mac - compiled languages: Xcode

Windows - compiled languages: Visual Studio

Linux: DDD

all platforms: eclipse, gdb (DDD and eclipse are GUIs for gdb)

python: spyder,

R: RStudio, debug, browser

NB. If you are using the Windows command prompt, you will have to replace all %%bash directives in this notebook

with %%cmd

Using the python debugger

Unfortunately this doesn’t work nicely in the notebook. But from the command line, you can run a python program

with:

Basic navigation:

Basic command to navigate the code and the python debugger:

def test_build_default_params():
 with patch.object(requests, "get") as mock_get:
 map_at(51.0, 0.0)
 mock_get.assert_called_with(
 "https://static-maps.yandex.ru/1.x/?",
 params={
 "z": 12,
 "size": "400,400",
 "ll": "0.0,51.0",
 "l": "map",
 "lang": "en_US",
 },
 timeout=60,
)

test_build_default_params()

def partial_derivative(function, at, direction, delta=1.0):
 f_x = function(at)
 x_plus_delta = at[:]
 x_plus_delta[direction] += delta
 f_x_plus_delta = function(x_plus_delta)
 return (f_x_plus_delta - f_x) / delta

partial_derivative(sum, [0, 0, 0], 1)

1.0

from unittest.mock import MagicMock

def test_derivative_2d_y_direction():
 func = MagicMock()
 partial_derivative(func, [0, 0], 1)
 func.assert_any_call([0, 1.0])
 func.assert_any_call([0, 0])

test_derivative_2d_y_direction()

MagicMock() - MagicMock()

<MagicMock name='mock.__sub__()' id='140587536994160'>

Mock() - Mock()

TypeError Traceback (most recent call last)
Cell In[19], line 1
----> 1 Mock() - Mock()

TypeError: unsupported operand type(s) for -: 'Mock' and 'Mock'

 [pdb](https://docs.python.org/3.8/library/pdb.html)

python -m pdb my_program.py

https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DebugYourApp/DebugYourApp.html
http://msdn.microsoft.com/en-us/library/bb483011.aspx
https://www.gnu.org/software/ddd/
http://www.eclipse.org/
http://www.sourceware.org/gdb/
http://pythonhosted.org/spyder/index.html
http://www.rstudio.com/ide/docs/debugging/overview
http://stat.ethz.ch/R-manual/R-devel/library/base/html/debug.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html

help: prints the help

help n: prints help about command n

n(ext): executes one line of code. Executes and steps over functions.

s(tep): step into current function in line of code

l(ist): list program around current position

w(where): prints current stack (where we are in code)

[enter]: repeats last command

anypythonvariable: print the value of that variable

The python debugger is a python shell: it can print and compute values, and even change the values of the variables

at that point in the program.

Breakpoints

Break points tell debugger where and when to stop We say

b somefunctionname

The debugger is, of course, most used interactively, but here I’m showing a prewritten debugger script:

Alternatively, break-points can be set on files: b file.py:20 will stop on line 20 of file.py.

Post-mortem

Debugging when something goes wrong:

1. Have a crash somewhere in the code

2. run python -m pdb file.py or run the cell with %pdb on

The program should stop where the exception was raised

1. use w and l for position in code and in call stack

2. use up and down to navigate up and down the call stack

3. inspect variables along the way to understand failure

Note Running interactively like in the following example does work in the notebook. Try it out!

%%writefile energy_example.py
from diffusion.model import energy

print(energy([5, 6, 7, 8, 0, 1]))

Writing energy_example.py

%%writefile commands
restart # restart session
n
b energy # program will stop when entering energy
c # continue program until break point is reached
print(density) # We are now "inside" the energy function and can print any
variable.

Overwriting commands

%%bash
python -m pdb energy_example.py < commands

> /home/runner/work/rse-course/rse-
course/module05_testing_your_code/energy_example.py(1)<module>()

-> from diffusion.model import energy

(Pdb) Restarting /home/runner/work/rse-course/rse-
course/module05_testing_your_code/energy_example.py with arguments:

 # restart session

> /home/runner/work/rse-course/rse-
course/module05_testing_your_code/energy_example.py(1)<module>()

-> from diffusion.model import energy

(Pdb) > /home/runner/work/rse-course/rse-
course/module05_testing_your_code/energy_example.py(3)<module>()

-> print(energy([5, 6, 7, 8, 0, 1]))

(Pdb) Breakpoint 1 at /home/runner/work/rse-course/rse-
course/module05_testing_your_code/diffusion/model.py:5

(Pdb) > /home/runner/work/rse-course/rse-
course/module05_testing_your_code/diffusion/model.py(13)energy()

-> density = array(density)

(Pdb) [5, 6, 7, 8, 0, 1]

(Pdb)

%pdb on
from diffusion.model import energy
partial_derivative(energy, [5, 6, 7, 8, 0, 1], 5)

5.6 Continuous Integration

Estimated time for this notebook: 15 minutes

Getting past “but it works on my machine…”

Try running the code below:

%%bash
rm -rf continuous_int
mkdir continuous_int
touch continuous_int/__init__.py

%%writefile continuous_int/test_demo.py
import sys
import re

def test_platform():
 assert re.search("\d", sys.platform)

def test_replace():
 assert "".replace("", "A", 2) == "A"

Writing continuous_int/test_demo.py

%%bash
cd continuous_int
pytest || echo "tests complete"

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/continuous_int

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 2 items

test_demo.py FF [100%]

=================================== FAILURES ===================================

________________________________ test_platform _________________________________

 def test_platform():

> assert re.search("\d", sys.platform)

E AssertionError: assert None

E + where None = <function search at 0x7f1eb17275e0>('\\d', 'linux')

E + where <function search at 0x7f1eb17275e0> = re.search

E + and 'linux' = sys.platform

test_demo.py:5: AssertionError

_________________________________ test_replace _________________________________

 def test_replace():

> assert "".replace("", "A", 2) == "A"

E AssertionError: assert '' == 'A'

E - A

test_demo.py:8: AssertionError

=============================== warnings summary ===============================

test_demo.py:5

 /home/runner/work/rse-course/rse-
course/module05_testing_your_code/continuous_int/test_demo.py:5:
DeprecationWarning: invalid escape sequence \d

 assert re.search("\d", sys.platform)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

=========================== short test summary info ============================

FAILED test_demo.py::test_platform - AssertionError: assert None

 + where None = <function search at 0x7f1eb17275e0>('\\d', 'linux')

 + where <function search at 0x7f1eb17275e0> = re.search

 + and 'linux' = sys.platform

The example above is a trival, and deliberate, example of code that will behave differently on different computers.

Much more subtle instances can occur in real-life, which if allowed to propergate, they can result in bugs and

errors that are difficult to trace, let alone fix.

One mitigation for this problem is to use a process of “Continuous Integration (CI)”. This is a process of drawing

together all developer contributions as early as possible and freaquently running the automated tests. Typically

this involves the use of CI servers, which provide a common and reliable environment to run our tests. (This is not

the only use of CI servers - we will touch on other use cases in later modules)

Options for CI Servers

There are many different open-source or propritory CI Servers available. In some cases it might be appropriate to

have on-permise CI Servers at your organisation.

There are also a number of Continuous-Integration-Server-as-a-Service products that can be use free-of-charge for

open source projects. Here we will expand on “GitHub Actions” which is a Continuous-Integration-Server-as-a-

Service, which is one component of the wider GitHub ecosystem.

Objectives

We would like to test our code on

different operating systems

different versions of python

each commit to a pull request

Apply this to the personal github repo you made in module 04”

Create a new branch in your repo.

Copy the files in the continuous_int directory into your local clone. Note that the .yml file must exist in the

directory .github/workflows, which must be in the root of your repo. (The . prefixed to the .github directory

means that it is hidden by default).

Commit your changes and push them

Create a Pull Request to the main branch of your own repo.

When succesfully applied to your repo, you should see that a number of tests are completed on every commit pushed,

on every pull request.

These tests have been designed that they will both pass only if they are run on Windows and on Python v3.9 or

higher, in order to demostrate the matrix workings of GH Actions. In a more more realistic senario, you should aim

to have your test pass in all contexts.

Futher reading:

FAILED test_demo.py::test_replace - AssertionError: assert '' == 'A'

 - A

========================= 2 failed, 1 warning in 0.10s =========================

tests complete

%%bash
mkdir -p continuous_int/.github/workflows

%%writefile continuous_int/.github/workflows/ci-tests.yml
This workflow will install Python dependencies, run tests with a variety of
Python versions, on Windows and Linux
For more information see: https://help.github.com/actions/language-and-
framework-guides/using-python-with-github-actions

name: Unit tests

on:
 pull_request:
 branches:
 - main
 push:

jobs:
 build:
 strategy:
 # We use `fail-fast: false` for teaching purposess. This ensure that all
combinations of the matrix
 # will run even if one or more fail.
 fail-fast: false
 matrix:
 python-version: [3.8, 3.9, "3.10"]
 os: [ubuntu-latest, windows-latest]

 runs-on: ${{ matrix.os }}

 steps:
 - uses: actions/checkout@v2
 - name: Set up Python ${{ matrix.python-version }}
 uses: actions/setup-python@v1
 with:
 python-version: ${{ matrix.python-version }}

 # Yes we have to explictly install pytest. In a "real" example this could be
included in a
 # requirement.txt or environment.yml to setup your environment
 - name: Install PyTest
 run: |
 python -m pip install pytest
 # Now run the tests
 - name: Test with pytest
 run: |
 pytest

Writing continuous_int/.github/workflows/ci-tests.yml

https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
https://docs.github.com/en/actions

There can be cases where is it propriate to expect different behaviour on different platforms. PyTest has

features that allow for cases.

GitHub Actions themselves can be difficult to debug because of the need to commit and push every minor change.

“Act” provides a tool to help debug some GH Actions locally.

Recap example: Monte-Carlo

Problem: Implement and test a simple Monte-Carlo algorithm

Given an input function (energy) and starting point (density) and a temperature :

1. Compute energy at current density.

2. Move randomly chosen agent randomly left or right.

3. Compute second energy.

4. Compare the two energies:

5. If second energy is lower, accept move.

6. is a parameter which determines how likely the simulation is to move from a ‘less favourable’ situation to a

‘more favourable’ one.

7. Compute and a random number between 0 and 1,

8. If , do the move anyway.

9. Repeat.

the algorithm should work for (m)any energy function(s).

there should be separate tests for separate steps! What constitutes a step?

tests for the Monte-Carlo should not depend on other parts of code.

Use matplotlib to plot density at each iteration, and make an animation

NB. If you are using the Windows command prompt, you will have to replace all %%bash directives in this notebook

with %%cmd

Exercise - Partial Solution

We have given you a partial solution below. In the solution we have broken the problem down into pieces:

1. A function to generate a random change: random_agent(), random_direction()

2. A function to compute the energy before the change and after it: energy()

3. A function to determine the probability of a change given the energy difference (1 if decreases, otherwise

based on exponential): change_density()

4. A function to determine whether to execute a change or not by drawing a random numberaccept_change()

5. A method to iterate the above procedure: step()

Exercise: Fill in the gaps for testing

1. Input insanity: We have provided some unittests can provide a range of possible valid and invalid inputs. Add

the production code necessary to handle these senarios elegantly.

2. We have provide the production code for change_density() and accept_change(). Add tests to ensure these functions

work as expected. Consider these senarios:

change_density(): density is change by a particle hopping left or right? Do all positions have an equal chance of

moving?

accept_change() will move be accepted when second energy is lower?

Windows: You will need to run the following instead

T

β

P0 = e−β(E1−E0) P1

P0 > P1

%%bash
rm -rf DiffusionExercise
mkdir DiffusionExercise

%%cmd
rmdir /s DiffusionExercise
mkdir DiffusionExercise

https://docs.pytest.org/en/6.2.x/skipping.html
https://github.com/nektos/act
http://matplotlib.org/

%%writefile DiffusionExercise/MonteCarlo.py
import matplotlib.pyplot as plt
from numpy import sum, array
from numpy.random import randint, choice

class MonteCarlo:
 """A simple Monte Carlo implementation"""

 def __init__(self, energy, density, temperature=1, itermax=1000):
 from numpy import any, array

 # ADD CODE HERE
 # Sanitise your inputs

 density = array(density)
 self.itermax = itermax

 self.current_energy = energy(density)
 self.temperature = temperature
 self.density = density

 def random_direction(self):
 return choice([-1, 1])

 def random_agent(self, density):
 # Particle index
 particle = randint(sum(density))
 current = 0
 for location, n in enumerate(density):
 current += n
 if current > particle:
 break
 return location

 def change_density(self, density):
 """Move one particle left or right."""

 location = self.random_agent(density)

 # Move direction
 if density[location] - 1 < 0:
 return array(density)
 if location == 0:
 direction = 1
 elif location == len(density) - 1:
 direction = -1
 else:
 direction = self.random_direction()

 # Now make change
 result = array(density)
 result[location] -= 1
 result[location + direction] += 1
 return result

 def accept_change(self, prior, successor):
 """Returns true if should accept change."""
 from numpy import exp
 from numpy.random import uniform

 if successor <= prior:
 return True
 else:
 return exp(-(successor - prior) / self.temperature) > uniform()

 def step(self):
 iteration = 0
 while iteration < self.itermax:
 new_density = self.change_density(self.density)
 new_energy = energy(new_density)

 accept = self.accept_change(self.current_energy, new_energy)
 if accept:
 self.density, self.current_energy = new_density, new_energy
 iteration += 1

 return self.current_energy, self.density

def energy(density, coefficient=1):
 """Energy associated with the diffusion model
 :Parameters:
 density: array of positive integers
 Number of particles at each position i in the array/geometry
 """
 from numpy import array, any, sum

 # Make sure input is an array
 density = array(density)

 # of the right kind (integer). Unless it is zero length, in which case type
does not matter.
 if density.dtype.kind != "i" and len(density) > 0:
 raise TypeError("Density should be an array of *integers*.")
 # and the right values (positive or null)
 if any(density < 0):
 raise ValueError("Density should be an array" + "of *positive* integers.")
 if density.ndim != 1:
 raise ValueError(
 "Density should be an a *1-dimensional*" + "array of positive
integers."
)

 return coefficient * 0.5 * sum(density * (density - 1))

Writing DiffusionExercise/MonteCarlo.py

 Once Loop Reflect

import sys

sys.path.append("DiffusionExercise")
import numpy as np
from IPython.display import HTML
from matplotlib import animation
from matplotlib import pyplot as plt
from MonteCarlo import MonteCarlo, energy

Temperature = 0.1

density = [np.sin(i) for i in np.linspace(0.1, 3, 100)]
density = np.array(density) * 100
density = density.astype(int)

fig = plt.figure()
ax = plt.axes(xlim=(-1, len(density)), ylim=(0, np.max(density) + 1))
image = ax.scatter(range(len(density)), density)
txt_energy = plt.text(0, 100, "Energy = 0")
plt.xlabel("Temperature = 0.1")
plt.ylabel("Energy Density")

mc = MonteCarlo(energy, density, temperature=Temperature)

def simulate(step):
 energy, density = mc.step()
 image.set_offsets(np.vstack((range(len(density)), density)).T)
 txt_energy.set_text(f"Energy = {energy}")

anim = animation.FuncAnimation(fig, simulate, frames=200, interval=50)
HTML(anim.to_jshtml())

%%writefile DiffusionExercise/test_model.py
from MonteCarlo import MonteCarlo
from unittest.mock import MagicMock
from pytest import raises, approx

def test_input_sanity():
 """Check incorrect input do fail"""
 energy = MagicMock()

 # What happens if the tempurture is Absolute Zero? Can any thing meaningful be
calculated here?
 with raises(NotImplementedError) as exception:
 MonteCarlo(sum, [1, 1, 1], 0e0)

 # Tempurture cannot be negitive
 with raises(ValueError) as exception:
 MonteCarlo(energy, [1, 1, 1], temperature=-1e0)

 # What happens if we attempt to use a decimal density value?
 with raises(TypeError) as exception:
 MonteCarlo(energy, [1.0, 2, 3])

 # What happens if we attempt to use a negitive density value?
 with raises(ValueError) as exception:
 MonteCarlo(energy, [-1, 2, 3])

 # What happens if we attempt to use a 2D density array?
 with raises(ValueError) as exception:
 MonteCarlo(energy, [[1, 2, 3], [3, 4, 5]])

 # What happens if our density array is too short?
 with raises(ValueError) as exception:
 MonteCarlo(energy, [3])

 # What happens if our density array doesn't contain positive integers?
 with raises(ValueError) as exception:
 MonteCarlo(energy, [0, 0])

def test_move_particle_one_over():
 """Check density is change by a particle hopping left or right."""
 from numpy import nonzero, multiply
 from numpy.random import randint

 energy = MagicMock()

 # ADD CODE HERE
 # Test mc.change_density() here
 assert False

def test_equal_probability():
 """Check particles have equal probability of movement."""
 from numpy import array, sqrt, count_nonzero

 energy = MagicMock()

 # ADD CODE HERE
 # Test mc.change_density() here
 assert False

def test_accept_change():
 """Check that move is accepted if second energy is lower"""
 from numpy import sqrt, count_nonzero, exp

 # Clue
 energy = MagicMock()
 mc = MonteCarlo(energy, [1, 1, 1], temperature=100.0)

 # ADD CODE HERE
 # Test mc.accept_change() here
 assert False

def test_main_algorithm():
 import numpy as np
 from numpy import testing
 from unittest.mock import Mock

 density = [1, 1, 1, 1, 1]
 energy = MagicMock()
 mc = MonteCarlo(energy, density, itermax=5)

 acceptance = [True, True, True, True, True]
 mc.accept_change = Mock(side_effect=acceptance)
 mc.random_agent = Mock(side_effect=[0, 1, 2, 3, 4])
 mc.random_direction = Mock(side_effect=[1, 1, 1, 1, -1])
 np.testing.assert_equal(mc.step()[1], [0, 1, 1, 2, 1])

Writing DiffusionExercise/test_model.py

%%bash
cd DiffusionExercise
pytest --cov || echo "test failed"

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/DiffusionExercise

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 5 items

test_model.py FFFF. [100%]

=================================== FAILURES ===================================

______________________________ test_input_sanity _______________________________

 def test_input_sanity():

 """Check incorrect input do fail"""

 energy = MagicMock()

 # What happens if the tempurture is Absolute Zero? Can any thing
meaningful be calculated here?

 with raises(NotImplementedError) as exception:

> MonteCarlo(sum, [1, 1, 1], 0e0)

E Failed: DID NOT RAISE <class 'NotImplementedError'>

test_model.py:12: Failed

_________________________ test_move_particle_one_over __________________________

 def test_move_particle_one_over():

 """Check density is change by a particle hopping left or right."""

 from numpy import nonzero, multiply

 from numpy.random import randint

 energy = MagicMock()

 # ADD CODE HERE

 # Test mc.change_density() here

> assert False

E assert False

test_model.py:48: AssertionError

____________________________ test_equal_probability ____________________________

 def test_equal_probability():

 """Check particles have equal probability of movement."""

 from numpy import array, sqrt, count_nonzero

 energy = MagicMock()

 # ADD CODE HERE

 # Test mc.change_density() here

> assert False

E assert False

test_model.py:59: AssertionError

______________________________ test_accept_change ______________________________

 def test_accept_change():

 """Check that move is accepted if second energy is lower"""

 from numpy import sqrt, count_nonzero, exp

 # Clue

 energy = MagicMock()

 mc = MonteCarlo(energy, [1, 1, 1], temperature=100.0)

 # ADD CODE HERE

 # Test mc.accept_change() here

> assert False

E assert False

test_model.py:72: AssertionError

---------- coverage: platform linux, python 3.8.18-final-0 -----------

Name Stmts Miss Cover

MonteCarlo.py 60 17 72%

test_model.py 45 12 73%

TOTAL 105 29 72%

=========================== short test summary info ============================

FAILED test_model.py::test_input_sanity - Failed: DID NOT RAISE <class
'NotImplementedError'>

Complete Solution

When you’ve attempted the exercise, have a look at this completed example solution.

Windows: You will need to run the following instead

FAILED test_model.py::test_move_particle_one_over - assert False

FAILED test_model.py::test_equal_probability - assert False

FAILED test_model.py::test_accept_change - assert False

========================= 4 failed, 1 passed in 0.67s ==========================

test failed

don't look yet

ready?

%%bash
rm -rf DiffusionSolution
mkdir DiffusionSolution

%%cmd
rmdir /s DiffusionSolution
mkdir DiffusionSolution

%%writefile DiffusionSolution/MonteCarlo.py
import matplotlib.pyplot as plt
from numpy import sum, array
from numpy.random import randint, choice

class MonteCarlo:
 """A simple Monte Carlo implementation"""

 def __init__(self, energy, density, temperature=1, itermax=1000):
 from numpy import any, array

 density = array(density)
 self.itermax = itermax

 if temperature == 0:
 raise NotImplementedError("Zero temperature not implemented")
 if temperature < 0e0:
 raise ValueError("Negative temperature makes no sense")

 if len(density) < 2:
 raise ValueError("Density is too short")
 # of the right kind (integer). Unless it is zero length,
 # in which case type does not matter.
 if density.dtype.kind != "i" and len(density) > 0:
 raise TypeError("Density should be an array of *integers*.")
 # and the right values (positive or null)
 if any(density < 0):
 raise ValueError("Density should be an array of" + "*positive*
integers.")
 if density.ndim != 1:
 raise ValueError(
 "Density should be an a *1-dimensional*" + "array of positive
integers."
)
 if sum(density) == 0:
 raise ValueError("Density is empty.")

 self.current_energy = energy(density)
 self.temperature = temperature
 self.density = density

 def random_direction(self):
 return choice([-1, 1])

 def random_agent(self, density):
 # Particle index
 particle = randint(sum(density))
 current = 0
 for location, n in enumerate(density):
 current += n
 if current > particle:
 break
 return location

 def change_density(self, density):
 """Move one particle left or right."""

 location = self.random_agent(density)

 # Move direction
 if density[location] - 1 < 0:
 return array(density)
 if location == 0:
 direction = 1
 elif location == len(density) - 1:
 direction = -1
 else:
 direction = self.random_direction()

 # Now make change
 result = array(density)
 result[location] -= 1
 result[location + direction] += 1
 return result

 def accept_change(self, prior, successor):
 """Returns true if should accept change."""
 from numpy import exp
 from numpy.random import uniform

 if successor <= prior:
 return True
 else:
 return exp(-(successor - prior) / self.temperature) > uniform()

 def step(self):
 iteration = 0
 while iteration < self.itermax:
 new_density = self.change_density(self.density)
 new_energy = energy(new_density)

 accept = self.accept_change(self.current_energy, new_energy)
 if accept:
 self.density, self.current_energy = new_density, new_energy
 iteration += 1

 return self.current_energy, self.density

def energy(density, coefficient=1):
 """Energy associated with the diffusion model
 :Parameters:
 density: array of positive integers
 Number of particles at each position i in the array/geometry
 """
 from numpy import array, any, sum

 # Make sure input is an array
 density = array(density)

 # of the right kind (integer). Unless it is zero length, in which case type
does not matter.
 if density.dtype.kind != "i" and len(density) > 0:
 raise TypeError("Density should be an array of *integers*.")
 # and the right values (positive or null)
 if any(density < 0):
 raise ValueError("Density should be an array" + "of *positive* integers.")
 if density.ndim != 1:
 raise ValueError(
 "Density should be an a *1-dimensional*" + "array of positive
integers."
)

 return coefficient * 0.5 * sum(density * (density - 1))

Writing DiffusionSolution/MonteCarlo.py

 Once Loop Reflect

import sys

sys.path.append("DiffusionSolution")
import numpy as np
from IPython.display import HTML
from matplotlib import animation
from matplotlib import pyplot as plt
from MonteCarlo import MonteCarlo, energy

Temperature = 0.1

density = [np.sin(i) for i in np.linspace(0.1, 3, 100)]
density = np.array(density) * 100
density = density.astype(int)

fig = plt.figure()
ax = plt.axes(xlim=(-1, len(density)), ylim=(0, np.max(density) + 1))
image = ax.scatter(range(len(density)), density)
txt_energy = plt.text(0, 100, "Energy = 0")
plt.xlabel("Temperature = 0.1")
plt.ylabel("Energy Density")

mc = MonteCarlo(energy, density, temperature=Temperature)

def simulate(step):
 energy, density = mc.step()
 image.set_offsets(np.vstack((range(len(density)), density)).T)
 txt_energy.set_text(f"Energy = {energy}")

anim = animation.FuncAnimation(fig, simulate, frames=200, interval=50)
HTML(anim.to_jshtml())

%%writefile DiffusionSolution/test_model.py
from MonteCarlo import MonteCarlo
from unittest.mock import MagicMock
from pytest import raises, approx

def test_input_sanity():
 """Check incorrect input do fail"""
 energy = MagicMock()

 with raises(NotImplementedError):
 MonteCarlo(sum, [1, 1, 1], 0e0)
 with raises(ValueError):
 MonteCarlo(energy, [1, 1, 1], temperature=-1e0)

 with raises(TypeError):
 MonteCarlo(energy, [1.0, 2, 3])
 with raises(ValueError):
 MonteCarlo(energy, [-1, 2, 3])
 with raises(ValueError):
 MonteCarlo(energy, [[1, 2, 3], [3, 4, 5]])
 with raises(ValueError):
 MonteCarlo(energy, [3])
 with raises(ValueError):
 MonteCarlo(energy, [0, 0])

def test_move_particle_one_over():
 """Check density is change by a particle hopping left or right."""
 from numpy import nonzero, multiply
 from numpy.random import randint

 energy = MagicMock()

 for i in range(100):
 # Do this n times, to avoid
 # issues with random numbers
 # Create density

 density = randint(50, size=randint(2, 6))
 mc = MonteCarlo(energy, density)
 # Change it
 new_density = mc.change_density(density)

 # Make sure any movement is by one
 indices = nonzero(density - new_density)[0]
 assert len(indices) == 2, "densities differ in two places"
 assert (
 multiply.reduce((density - new_density)[indices]) == -1
), "densities differ by + and - 1"

def test_equal_probability():
 """Check particles have equal probability of movement."""
 from numpy import array, sqrt, count_nonzero

 energy = MagicMock()

 density = array([1, 0, 99])
 mc = MonteCarlo(energy, density)
 changes_at_zero = [
 (density - mc.change_density(density))[0] != 0 for i in range(10000)
]
 assert count_nonzero(changes_at_zero) == approx(
 0.01 * len(changes_at_zero), 0.5 * sqrt(len(changes_at_zero))
)

def test_accept_change():
 """Check that move is accepted if second energy is lower"""
 from numpy import sqrt, count_nonzero, exp

 energy = MagicMock()
 mc = MonteCarlo(energy, [1, 1, 1], temperature=100.0)
 # Should always be true.
 # But do more than one draw,
 # in case randomness incorrectly crept into
 # implementation
 for i in range(10):
 assert mc.accept_change(0.5, 0.4)
 assert mc.accept_change(0.5, 0.5)

 # This should be accepted only part of the time,
 # depending on exponential distribution
 prior, successor = 0.4, 0.5
 accepted = [mc.accept_change(prior, successor) for i in range(10000)]
 assert count_nonzero(accepted) / float(len(accepted)) == approx(
 exp(-(successor - prior) / mc.temperature), 3e0 / sqrt(len(accepted))
)

def test_main_algorithm():
 import numpy as np
 from numpy import testing
 from unittest.mock import Mock

 density = [1, 1, 1, 1, 1]
 energy = MagicMock()
 mc = MonteCarlo(energy, density, itermax=5)

 acceptance = [True, True, True, True, True]
 mc.accept_change = Mock(side_effect=acceptance)
 mc.random_agent = Mock(side_effect=[0, 1, 2, 3, 4])
 mc.random_direction = Mock(side_effect=[1, 1, 1, 1, -1])
 np.testing.assert_equal(mc.step()[1], [0, 1, 1, 2, 1])

Writing DiffusionSolution/test_model.py

%%bash
cd DiffusionSolution
pytest

6. Software Projects
Turning your code into a package

Releasing code

Choosing an open-source license

Software project management

Organising issues and tasks

Contents

6.0 Libraries (5 minutes)

6.1 Installing libraries (10 minutes)

6.2 Managing Dependencies (15 minutes)

6.3 Python outside the notebook (15 minutes)

6.4 Packaging (25 minutes)

6.5 Documentation (10 minutes)

6.6 Software Project Management (5 minutes)

6.7 Software Licensing (10 minutes)

6.8 Managing software issues (5 minutes)

Total time: 1 hr 40 minutes

Exercises
A classroom exercise is included at the end of the module: 6.9 Exercise: Packaging Troll Treasure. We recommend

that instructors arrange for the exercise to be done in groups. The exercise can also be left as a self-paced

homework assignment if preferred.

6.0 Libraries

Estimated time for this notebook: 5 minutes

What is a library?

In Python, it can be useful to keep the following concepts in mind:

a module is some related code saved in a single .py file

a package is a collection of related modules

a library is a collection of related modules and packages

For instance, the scikit-learn library contains the linear_model package which contains the LinearRegression module.

In practice, many Python projects are distributed as packages rather than libraries.

In this course we will use the generic term library to describe any code that can be reused in multiple places.

Libraries are awesome

The strength of a language lies as much in the set of libraries available, as it does in the language itself.

A great set of libraries allows for a very powerful programming style:

Write minimal code yourself

Choose the right libraries

Plug them together

Create impressive results

Not only is this efficient with your programming time, it’s also more efficient with computer time. The chances are

any algorithm you might want to use has already been programmed better by someone else.

Drawbacks of libraries.

Sometimes, libraries are not looked after by their creator: code that is not maintained rots:

It no longer works with later versions of upstream libraries.

It doesn’t work on newer platforms or systems.

Features that are needed now, because the field has moved on, are not added

Sometimes, libraries are hard to get working:

For libraries in pure python, this is almost never a problem

But many libraries involve compiled components: these can be hard to install.

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module05_testing_your_code/DiffusionSolution

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 5 items

test_model.py [100%]

============================== 5 passed in 0.56s ===============================

Contribute, don’t duplicate

You have a duty to the ecosystem of scholarly software:

If there’s a tool or algorithm you need, find a project which provides it.

If there are features missing, or problems with it, fix them, don’t create your own library.

How to choose a library

When was the last commit?

How often are there commits?

Can you find the lead contributor on the internet?

Do they respond when approached:

issues raised on GitHub

emails to developer list

community message boards (e.g. Gitter)

personal emails

tweets

Are there contributors other than the lead contributor?

Is there discussion of the library on Stack Exchange?

Is the code on an open version control tool like GitHub?

Is it on standard package repositories. (PyPI, apt/yum/brew)

Are there any tests?

Download it. Can you build it? Do the tests pass?

Is there an open test dashboard? (Travis/Jenkins/CDash)

What dependencies does the library itself have? Do they pass this list?

Are different versions of the library clearly labeled with version numbers?

Is there a changelog?

Sensible Version Numbering

The best approach to version numbers clearly distinguishes kinds of change:

Given a version number MAJOR.MINOR.PATCH, e.g. 2.11.14 increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards-compatible manner, and

PATCH version when you make backwards-compatible bug fixes.

This is called Semantic Versioning

The Python Standard Library

Python comes with a powerful standard library. Learning python is as much about learning this library as learning

the language itself. You’ve already seen a few packages in this library: math, pdb, pytest, datetime.

The Python Package Index

Python’s real power, however, comes with the Python Package Index: PyPI. This is a huge array of libraries, with

all kinds of capabilities, all easily installable from the command line or through your Python distribution.

6.1 Installing libraries

Estimated time for this notebook: 10 minutes

We’ve seen that there are lots of python libraries. But how do we install them?

The main problem is this: libraries need other libraries

So you can’t just install a library by copying code to the computer: you’ll find yourself wandering down a tree of

“dependencies”; libraries needed by libraries needed by the library you want.

This is actually a good thing; it means that people are making use of each others’ code. There’s a real problem in

scientific programming, of people who think they’re really clever writing their own twenty-fifth version of the

same thing.

So using other people’s libraries is good.

Why don’t we do it more? Because it can often be quite difficult to install other peoples’ libraries!

Python has developed a good tool for avoiding this: pip.

Installing scikit-learn using pip

On a computer you control, on which you have installed python via Anaconda, you will need to open a terminal to

invoke the library-installer program, pip.

On windows, go to start->all programs->Anaconda->Anaconda Command Prompt

On mac, start terminal.

On linux, open a bash shell.

Into this shell, type:

pip install scikit-learn

The computer will install the package automatically from PyPI.

Now, close the Jupyter notebook if you have it open, and reopen it. Check your new library is installed with:

from sklearn.datasets import load_wine

wine = load_wine()
X = wine.data
y = wine.target
feature_names = wine.feature_names

http://xkcd.com/927/
https://gitter.im/
http://semver.org/
https://docs.python.org/2/library/
https://pypi.python.org/pypi

That was actually pretty easy, I hope. This is how you’ll install new libraries when you need them.

Troubleshooting:

On mac or linux, you might get a complaint that you need “superuser”, “root”, or “administrator” access. If so

type:

pip install --user scikit-learn

and enter your password.

If you get a complaint like: ‘pip is not recognized as an internal or external command’, try the following:

conda install pip (if you are using conda)

or follow the official instructions otherwise

Ask one of the instructors/helpers if you’re having difficulties, or open an issue in the course repo.

Where do these libraries go?

Your computer will be configured to keep installed Python packages in a particular place.

Python knows where to look for possible library installations in a list of places, called the “PythonPath”. It will

try each of these places in turn, until it finds a matching library name.

Libraries not on PyPI

Sometimes library code you want to use won’t be available on PyPI. In that case there are a few options:

The library is available on another package index

For example, some libraries not on PyPI are available with conda (see details below).

The library is in a git repo

If the library is available on GitHub or another service hosting git repos, pip can install it from the repo

instead of PyPI:

This could also be an option if you need a development version of a library that hasn’t been released yet.

(NB: sktime is also available on PyPI, we just use it as an example here).

Download and install locally

import matplotlib.pyplot as plt

plt.figure(figsize=(8, 6))

Find the column index of two features to plot
color_idx = feature_names.index("color_intensity")
proline_idx = feature_names.index("proline")

Plot the training points
plt.scatter(X[:, color_idx], X[:, proline_idx], c=y, edgecolor="k")
plt.xlabel("Color Intensity")
plt.ylabel("Proline")

plt.xticks(())
plt.yticks(())

([], [])

import numpy

numpy.__path__

['/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/numpy']

import sys

sys.path

['/opt/hostedtoolcache/Python/3.8.18/x64/lib/python38.zip',
 '/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8',
 '/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/lib-dynload',
 '',
 '/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages']

pip install git+https://github.com/alan-turing-institute/sktime.git

https://packaging.python.org/en/latest/tutorials/installing-packages/#ensure-you-can-run-pip-from-the-command-line
https://github.com/alan-turing-institute/rse-course/issues
https://pypi.org/project/sktime/

Sometimes you’ll need to download the source code directly, or to test the installation of a library you’re working

on yourself. To do this, download the code, then, in a terminal:

Installing binary dependencies with conda

pip is the usual Python tool for installing libraries. But there’s one area of library installation that is still

awkward: some python libraries depend not on other python libraries, but on libraries in C++ or Fortran.

This can cause you to run into difficulties installing some libraries. Fortunately, Anaconda provide a carefully

managed set of scripts for installing lots of these awkward non-python libraries too. You can do this with the

conda command line tool, if you’re using Anaconda.

Simply type

instead of pip install. This will fetch the python package not from PyPI, but from Anaconda’s distribution for your

platform, and manage any non-python dependencies too.

Typically, if you’re using Anaconda, whenever you come across a python package you want, you should check if

Anaconda package it first using conda search (or this list in the documentation). If it is there you can conda install

it, you’ll likely have less problems. But Anaconda doesn’t package everything, so you’ll need to pip install from

time to time.

The maintainers of packages may have also provided releases of their software via conda-forge, a community-driven

project that provides a collection of packages for the anaconda environment. In such cases you can add conda-forge

to your anaconda installation and use search and install as explained above.

Other Distribution tools

Distribution tools allow one to obtain a working copy of someone else’s package.

Language-specific tools:

Python: PyPI

R: CRAN

Ruby: Ruby Gems

Perl: CPAN

Platform-specific packagers:

Ubuntu and Debian: dpkg for apt-get

Redhat and Fedora: rpm for yum

Mac OS: homebrew

Windows: Chocolatey

If you’re working in a compiled language like C++ or Fortran, there’s often no language specific repository. You’ll

need to write platform installers for as many platforms as you want to support.

6.2 Managing Dependencies

Estimated time for this notebook: 15 minutes

Specifying Dependencies

pip and requirements.txt

Probably the most well known and ubiquitous way of specifying and installing dependencies in Python is with a

requirements.txt file. This is a text file with a list of the names of packages your code relies on, for example:

To install dependencies from a requirements.txt file do the following:

requirements.txt files are not the only way of specifying dependencies, we’ll refer to some others and the

differences between them here and later in this module.

Pinning versions

Different versions of libraries may have different features, behaviour, and interfaces. To ensure our code is

reproducible and other users (and ourselves in the future) get the same results from running the code, it’s a good

idea to specify the version of each dependency that should be installed.

To pin dependencies to specific versions include them in requirements.txt like this:

To automatically generate a requirements.txt file like this, containing the versions of all the libraries installed

in your current Python environment, you can run:

However, note that pip freeze won’t output only your direct dependencies, but also

cd <path_to_library_code> # change to the code directory
pip install . # install the library at the current path

conda install <whatever>

geopy
imageio
matplotlib
numpy
requests

pip install -r requirements.txt

geopy==2.2.0
imageio==2.19.3
matplotlib==3.5.2
numpy==1.23.0
requests==2.28.1

pip freeze

https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://conda-forge.org/
https://conda-forge.org/#about
https://pypi.org/
https://cran.r-project.org/
https://rubygems.org/
https://www.cpan.org/
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html
https://rpm.org/
https://brew.sh/
https://chocolatey.org/

the dependencies of your dependencies

the dependencies of the dependencies of your dependencies

…

It may be better to only specify your direct dependencies and let the maintainers of those libraries deal with

their own dependencies (but that can also come with future problems and incompatibilities in some cases).

Version ranges

You don’t have to specify an exact version, you can also use comparisons like <=, !=, and >= to give ranges of

package versions that are compatible with your code (see here).

An interesting one is ~=, or “approximately equal to”. For example, if we specified the numpy dependency as:

it allows pip to install any (newer) 1.23.x version of numpy (e.g. 1.23.1 or 1.23.5), but not versions 1.24.0 or later

(which may introduce changes that are incompatible with 1.23.0).

(How) should you pin dependency versions?

There are potential caveats and pitfalls with all approaches. At the extremes you have:

Not specifying a version:

Dependencies are likely to introduce breaking changes in the future that will cause your code to fail or

give different results.

Pinning an exact version:

Specific versions may not be available on all platforms. You (or new users of your code) won’t get bug and

security fixes in new versions.

For research code, to ensure you get exactly the same results from repeating an analysis on another system (or a

fresh installation on the same system) pinning versions is often the best approach.

Updating dependencies

Running

will show a list of installed packages that have newer versions available. You can upgrade to the latest version by

running:

(and then update requirements.txt to reflect the new version you’re using, if needed).

This is quite a manual approach and other tools have more streamlined ways of handling the upgrading process. See

Poetry, for example.

There are also automated tools like dependabot that can look at the dependencies in your GitHub repo and suggest

changes to avoid security vulnerabilities.

Virtual Environments

Specifying dependency versions may not always be enough to give you a working (and future-proof) set up for

yourself and other users of your code. For example, you may have:

Different projects on your system requiring different versions of a library, or libraries that are incompatible

with each other.

Libraries that are only available on some platforms (e.g. Linux only) or have different behaviour on other

platforms.

Projects requiring different versions of Python itself

For these reasons we’d recommend using a separate “virtual environment” for each project on your system.

In a virtual environment all the packages you install are isolated from other environments, so you could have one

environment using Python 3.10 and numpy 1.23.1, and another using Python 3.8 and numpy 1.20.3, for example.

venv

venv is included in the Python standard library and can be used to create virtual environments (see the docs here).

To create a virtual environment:

where myenv is the name of the directory that will be created to store the environment’s configuration. The initial

contents of the myenv directory are:

numpy~=1.23.0

pip list --outdated

pip install --upgrade PACKAGE_NAME

%%bash

python -m venv myenv

%%bash

ls -F myenv/

bin/

include/

lib/

lib64@

pyvenv.cfg

https://peps.python.org/pep-0440/#version-specifiers
https://python-poetry.org/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment

The which bash command returns the path to an executable on your system. Currently, which python will return the path

to the environment you’re using to run the course notebooks:

To use our new virtual environment instead, we need to “activate” it, as follows:

the path to the python executable now points to a location in the myenv directory (our separate Python virtual

environment).

We can then install and run libraries without it impacting other Python environments on our system, e.g.:

Note:

You only need to activate the environment once usually. We need to do it in each cell here because using %%bash

is like creating a new terminal.

If you try which pip before and after activating the environment you’ll see that the virtual environment uses a

different pip executable as well

To leave the virtual environment and return to using your system Python (or the previously activated environment),

you need to “deactivate” it:

%%bash

which python

/opt/hostedtoolcache/Python/3.8.18/x64/bin/python

%%bash
source myenv/bin/activate

which python

/home/runner/work/rse-course/rse-
course/module06_software_projects/myenv/bin/python

%%bash
source myenv/bin/activate

pip install pyjokes
pyjoke

Collecting pyjokes

 Downloading pyjokes-0.6.0-py2.py3-none-any.whl (26 kB)

Installing collected packages: pyjokes

Successfully installed pyjokes-0.6.0

[notice] A new release of pip is available: 23.0.1 -> 24.0

[notice] To update, run: pip install --upgrade pip

What do you call a programmer from Finland? Nerdic.

%%bash
source myenv/bin/activate

echo "======================"
echo "In myenv, python path:"
which python
pyjoke
echo "======================"

deactivate

echo ""
echo "======================"
echo "Outside myenv, python path:"
which python
pyjoke
echo "======================"

conda

conda is a virtual environment, dependency, and package manager for multiple languages. There are multiple

distributions including Anaconda, which comes with many common data science libraries pre-installed, and Miniconda,

which is conda without pre-installed dependencies.

Advantages of conda include:

It has binaries built for multiple platforms, e.g. conda packages are usually available on Windows, Mac, and

Linux (whereas it’s quite common to find packages on PyPI that don’t have a Windows build, for example).

You can use it to install non-Python dependencies.

It’s an “all-in-one” tool: You can use it to manage your entire Python workflow.

Some disadvantages:

Other users of your code may not have or want to use conda (but everyone using Python will have pip available,

for example)

There’s a bit more bloat than other tools, and the dependency resolver can be quite slow.

conda environments a specified in the YAML format, typically in a file called environment.yml, and look like this:

Note that a version of Python itself is specified in the dependencies - you can install any version of Python in a

conda environment.

To create the environment:

And to use it:

Which to choose?

There’s a large ecosystem of different Python (and general) dependency, environment, and packaging tools, many more

than we’ve seen here. A few other notable ones are:

Docker - creates isolated “containers” which are whole virtual systems, allowing you to configure everything

including the operating system to use. This is a “maximally reproducible” solution that ensures future users of

your code get a complete and identical environment from the ground up.

pyenv - install and manage different versions of Python

Poetry - create virtual environments and Python packages, and improved dependency management

setuptools - for creating Python packages (we’ll be looking at this later)

Which are best for your project depends on what you’re trying to achieve and personal preference. It’s also likely

that you’ll be using multiple tools as they all have different priorities and features.

This table gives a rough summary of what the tools mentioned in this course can be used for, loosely ordered from

most flexibility (but perhaps most involved setup) at the top, to simpler, single-usecase tools at the botom:

======================

In myenv, python path:

/home/runner/work/rse-course/rse-
course/module06_software_projects/myenv/bin/python

There are 10 types of people: those who understand binary, those who don't, and
those who were expecting this joke to be in trinary.

======================

======================

Outside myenv, python path:

/opt/hostedtoolcache/Python/3.8.18/x64/bin/python

bash: line 15: pyjoke: command not found

======================

name: myenv

dependencies:
 - python=3.9
 - geopy=2.2.0
 - imageio=2.19.3
 - matplotlib=3.5.2
 - numpy=1.23.0
 - requests=2.28.1

conda env create -f environment.yml

conda activate myenv

work in the environment

conda deactivate

https://docs.conda.io/en/latest/
https://anaconda.org/
https://docs.conda.io/en/latest/miniconda.html
https://www.docker.com/
https://github.com/pyenv/pyenv
https://python-poetry.org/
https://setuptools.pypa.io/en/latest/userguide/quickstart.html

Virtual

environments

Install non-Python

dependencies

Install Python

versions

Manage Python

dependencies

Create Python

packages

Docker ✅ ✅ ✅ ❌ ❌

conda ✅ ✅ ✅ ✅ ✅

Poetry ✅ ❌ ❌ ✅ ✅

pyenv ✅ ❌ ✅ ❌ ❌

setuptools ❌ ❌ ❌ ✅ ✅

venv ✅ ❌ ❌ ❌ ❌

pip ❌ ❌ ❌ ✅ ❌

6.3 Python outside the notebook

Estimated time for this notebook: 15 minutes

We will often want to save our Python functions and classes, for use in multiple Notebooks or to interact with them

via a terminal.

Writing Python in Text Files

If you create your own Python files ending in .py, then you can import them with import just like external

libraries.

It’s best to use an editor like VS Code or PyCharm to do this. Here we use the %%writefile Jupyter “magic” to create

files from the notebook.

Let’s create a file greeter.py with a function greet that prints a welcome message in multiple colours (using the

colorama package):

Loading Our Function

We just wrote the file, there is no greet function in this notebook yet:

But we can import the functionality from greeter.py file that we created:

Or import the function from the file directly:

Note the file we created is in the same directory as this notebook:

%%writefile greeter.py
import colorama # used for creating coloured text

def greet(personal, family, title="", polite=False):
 greeting = "How do you do, " if polite else "Hey, "
 greeting = colorama.Back.BLACK + colorama.Fore.YELLOW + greeting
 if title:
 greeting += colorama.Back.BLUE + colorama.Fore.WHITE + title + " "

 greeting += (
 colorama.Back.WHITE
 + colorama.Style.BRIGHT
 + colorama.Fore.RED
 + personal
 + " "
 + family
)
 return greeting

Writing greeter.py

greet("James", "Hetherington")

NameError Traceback (most recent call last)
Cell In[2], line 1
----> 1 greet("James", "Hetherington")

NameError: name 'greet' is not defined

import greeter # note that you don't include the .py extension

print(greeter.greet("James", "Hetherington"))

Hey, James Hetherington

from greeter import greet

print(greet("James", "Hetherington"))

Hey, James Hetherington

glob is a library for finding files that match given patterns
from glob import glob

all files with a .py or .ipynb extension in the current directory
glob("*.py") + glob("*.ipynb")

['greeter.py',
 '06_01_installing_packages.ipynb',
 '06_09_exercise.ipynb',
 '06_02_managing_dependencies.ipynb',
 '06_08_software_issues.ipynb',
 '06_05_documentation.ipynb',
 '06_06_software_development.ipynb',
 '06_03_non_notebook_python.ipynb',
 '06_07_software_licensing.ipynb',
 '06_00_libraries.ipynb',
 '06_04_packaging.ipynb']

https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://pypi.org/project/colorama/

Currently we’re relying on all the module source code being in our current working directory. We’ll want to import

our modules from notebooks elsewhere on our computer: it would be a bad idea to keep all our Python work in one

folder.

The best way to do this is to learn how to make our code into a proper module that we can install. We’ll see more

on that in the next notebook.

Command-line Interfaces

argparse is the standard Python library for building programs with a command-line interface (another popular

library is click).

Here’s an example that creates a command-line interface to our greet function (in a file named command.py):

We can now run our saved interface with python command.py + the arguments we want to specify.

argparse generates some documentation to help us understand how to use it:

A few examples:

Having to type python command.py ... is not very intuitive, and we’re still relying on our files being in the same

directory. In the next notebook we’ll see a better way to include command-line interfaces as part of a package.

if __name__ == "__main__"

%%writefile command.py
from argparse import ArgumentParser

from greeter import greet

def process():
 parser = ArgumentParser(description="Generate appropriate greetings")

 # required (positional) arguments
 parser.add_argument("personal")
 parser.add_argument("family")

 # optional (keyword) arguments
 parser.add_argument("--title", "-t")
 parser.add_argument("--polite", "-p", action="store_true")
 # polite will be false unless "--polite" or "-p" given at command-line

 args = parser.parse_args()

 print(greet(args.personal, args.family, args.title, args.polite))

if __name__ == "__main__":
 process()

Writing command.py

%%bash
python command.py --help

usage: command.py [-h] [--title TITLE] [--polite] personal family

Generate appropriate greetings

positional arguments:

 personal

 family

optional arguments:

 -h, --help show this help message and exit

 --title TITLE, -t TITLE

 --polite, -p

%%bash
python command.py James Hetherington

Hey, James Hetherington

%%bash
python command.py --polite James Hetherington

How do you do, James Hetherington

%%bash
python command.py James Hetherington --title Dr

Hey, Dr James Hetherington

https://docs.python.org/3/library/argparse.html
https://click.palletsprojects.com/en/8.1.x/

In the command.py script above you may have noticed the strange if __name__ == "__main__" line. This is generally used

when you have a file that can be used both as a script and as a module in a package.

Let’s create a simplified version of greeter.py that prints the name of the special __name__ variable when it is

called:

If we invoke greeter.py directly, Python sets the value of __name__ to "__main__" and the code in the if block runs:

Now let’s create a simplified command.py that also prints __name__, and imports the greet function from greeter.py as

before:

And run the command script:

Note that when we import greeter.greet the contents of the whole greeter.py file are executed, so the code to print

the value of __name__ still runs. However, __name__ is now given the value greeter. This means when the if statement

is executed __name__ == "__main__" returns False, and we don’t see the “Hey, Laura Greeter” output.

Without that if statement we would get

which is unlikely to be what we wanted when running python command.py Sarah Command.

6.4 Packaging

Estimated time for this notebook: 25 minutes

Once we’ve made a working program, we’d like to be able to use it across our system and to share it with others. To

do this we need to create our own Python package.

As an example, we’ll create a package from the greeter.py and command.py files from the previous notebook. But we’ll

delete the files created last time first, to start from a clean slate:

Laying out a project

When planning to package a project for distribution, defining a suitable project layout is essential. We have a

typical example of a package layout in the Greetings directory, which looks like this:

%%writefile greeter.py
print("executing greeter.py, __name__ is", __name__)

def greet(personal, family):
 return "Hey, " + personal + " " + family

if __name__ == "__main__":
 print(greet("Laura", "Greeter"))

Overwriting greeter.py

%%bash
python greeter.py

executing greeter.py, __name__ is __main__

Hey, Laura Greeter

%%writefile command.py
print("executing command.py, __name__ is", __name__)

from argparse import ArgumentParser
from greeter import greet

def process():
 parser = ArgumentParser(description="Generate appropriate greetings")
 parser.add_argument("personal")
 parser.add_argument("family")
 args = parser.parse_args()
 print(greet(args.personal, args.family))

if __name__ == "__main__":
 process()

Overwriting command.py

%%bash
python command.py Sarah Command

executing command.py, __name__ is __main__

executing greeter.py, __name__ is greeter

Hey, Sarah Command

Hey, Laura Greeter
Hey, Sarah Command

Tidy up files created by previous notebook
import os

files = ["greeter.py", "command.py"]
for f in files:
 if os.path.exists(f):
 os.remove(f)

The package directory

All your library source code should be in a single directory tree under the parent project directory. Libraries are

usually structured with multiple files, perhaps one for each class.

The source code directory (and sub-directories) should contain an __init__.py file, which makes Python treat it as a

module. The __init__.py file can be empty.

With the file layout above, import greetings, import greetings.command, and import greetings.greeter will all be possible

after installing the package.

If we added a sub-directory, to provide functionality for multiple languages for example, with this structure:

then import greetings.languages, import greetings.languages.english, and import greetings.languages.italian would become

available. This is a way to group together related functionality/features in your package.

⚠ Advanced topic: The contents of the __init__.py file(s) is executed when you import a package. A common use case

for non-empty __init__.py files is to “shortcut” imports for convenience. For example, to import the main greet

function we’d currently need to do:

If we added that import code as a line in greetings/__init__.py, it will then be possible to do:

Build systems and config files

To install your package you need to define a “build system”, the tool that will do the work of creating the

package, and to provide a configuration file to specify how your package should be built.

The three most common package config files are:

pyproject.toml (preferred)

setup.cfg (may be deprecated in the future)

setup.py (may be needed for packages with complex build requirements)

You’ll find a lot of projects that use setup.py (which used to be the standard), but for new projects it’s

recommended to use pyproject.toml. TOML is a modern file format for configuration files.

There are multiple “build systems” that can interpret pyproject.toml files and build your package. The original and

most ubiquitous is setuptools, which we’ll use here.

Other options include Poetry, Flit and Hatch. We’d recommend looking at Poetry as an option for managing

dependencies, virtual environments, and packaging together. The structure of pyproject.toml will differ depending on

the tool you’re using.

Using setuptools and pyproject.toml

Specifying the build system

The [build-system] section gives the details the tool that should be used to create the package from our code, in

this case setuptools:

Specifying project metadata

The [project] section contains metadata about your package, at minimum this should include your package’s name

(usually the name of your package directory) and a version number:

Specifying dependencies

Rather than in a requirements.txt file, your package’s dependencies should be specified in pyproject.toml. These are

passed as a list in the [project] section (in this case we only have one dependency, colorama):

Python version

If our package requires a certain Python version to work, that can also be specified:

Greetings <--- Parent directory for your project (your git repo)
├── greetings <--- Directory containing the code for your package
│ ├── __init__.py <--- Tells Python to treat the directory as a package
│ ├── command.py
│ └── greeter.py
├── LICENSE.md <--- License to describe how others can use your package
├── pyproject.toml <--- Configuration and metadata for your package
├── README.md <--- Homepage to briefly describe how to install and use your package
└── tests <--- Tests for your package's functionality
 └── test_greeter.py

├── greetings
│ ├── __init__.py
│ ├── command.py
│ ├── greeter.py
│ └── languages
│ ├── __init__.py
│ ├── english.py
│ └── italian.py

from greetings.greeter import greet

from greetings import greet

[build-system]
requires = ["setuptools"] # the build tool to use
build-backend = "setuptools.build_meta" # the function to use to build the package

[project]
name = "greetings"
version = "0.0.1"

[project]
dependencies = ["colorama ~= 0.4.4"]

https://toml.io/en/
https://setuptools.pypa.io/en/latest/index.html
https://python-poetry.org/
https://flit.pypa.io/en/latest/
https://hatch.pypa.io/latest/

Optional dependencies

Sometimes a package may have extra optional features, with extra dependencies, that not all users need. A common

example is development dependencies (e.g. for running tests, building documentation, checking code quality, and

similar) that a normal user won’t need. Optional dependencies can be specified in the [project.optional-dependencies]

section:

dev is the name of an optional group of dependencies that can be passed to pip when installing the package (see

below). We could have multiple groups here with different (arbitrary) names and sets of dependencies.

Make a command-line interface

In the previous notebook we created a script command.py that could be run with python command.py ... with configurable

arguments using argparse. We can include scripts like these in the package installation to create a more intuitive

CLI (command-line interface) for our library:

The syntax above means that after installing the package the command greet will become available on our system, and

running greet will call the process function in the greetings/command.py file. See below for this in action.

Complete pyproject.toml

All together this is our complete pyproject.toml file:

This is a minimal example but there are many other metadata fields you can include and configuration options. See

the setuptools and Python packaging docs for details.

Installing the package

We can now install this code with

[project]
requires-python = ">=3.6"

[project.optional-dependencies]
dev = ["pytest ~= 7.1.2"]

[project.scripts]
greet = "greetings.command:process"

[build-system]
requires = ["setuptools"]
build-backend = "setuptools.build_meta"

[project]
name = "greetings"
version = "0.0.1"
requires-python = ">=3.6"
dependencies = ["colorama ~= 0.4.4"]

[project.optional-dependencies]
dev = ["pytest ~= 7.1.2"]

[project.scripts]
greet = "greetings.command:process"

%%bash
cd Greetings
pip install .

https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://packaging.python.org/en/latest/specifications/declaring-project-metadata/

Installing optional dependencies

To install dependencies specified in [project.optional-dependencies], include the name of the optional group in square

brackets, like this:

Editable mode

If you modify your source files, you would now find it appeared as if the program doesn’t change.

That’s because pip install copies the file elsewhere during installation (the location is system-dependent).

If you want to install a package, but keep working on it, you can install it in “editable mode”.

⚠ As of August 2022, setuptools does not support editable installs with pyproject.toml (only) packages, so you will

need a small setup.py file to make this work (see below). But this shouldn’t be necessary in the near future.

Then to install in editable mode:

Installing from GitHub

If we have our code in a (public) git repo anyone can now install our package directly from the git URL:

Uploading to PyPI

We could now submit “greeter” to PyPI so everyone could pip install greetings directly. For details see the Python

packaging tutorial.

Processing /home/runner/work/rse-course/rse-
course/module06_software_projects/Greetings

 Installing build dependencies: started

 Installing build dependencies: finished with status 'done'

 Getting requirements to build wheel: started

 Getting requirements to build wheel: finished with status 'done'

 Installing backend dependencies: started

 Installing backend dependencies: finished with status 'done'

 Preparing metadata (pyproject.toml): started

 Preparing metadata (pyproject.toml): finished with status 'done'

Requirement already satisfied: colorama~=0.4.4 in
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages (from
greetings==0.0.1) (0.4.6)

Building wheels for collected packages: greetings

 Building wheel for greetings (pyproject.toml): started

 Building wheel for greetings (pyproject.toml): finished with status 'done'

 Created wheel for greetings: filename=greetings-0.0.1-py3-none-any.whl size=2781
sha256=00d089493c4b2b052df57e897919dc9c76d85da4cca9dacc8004d9cea6afb20c

 Stored in directory: /tmp/pip-ephem-wheel-cache-
piukl1z6/wheels/a6/5c/81/c1c48894d5b25832088cf648e757dcc6d8eff3dc2116123a4a

Successfully built greetings

Installing collected packages: greetings

Successfully installed greetings-0.0.1

[notice] A new release of pip is available: 23.0.1 -> 24.0

[notice] To update, run: pip install --upgrade pip

cd Greetings
pip install ".[dev]"

%%writefile Greetings/setup.py
from setuptools import setup

setup()

Writing Greetings/setup.py

cd Greetings
pip install -e ".[dev]"

pip install git+https://github.com/alan-turing-institute/Greetings

https://discuss.python.org/t/help-testing-pep-660-support-in-setuptools/16904/34?u=astrojuanlu
https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives

Note there is very little approval/review process - you can put pretty much anything on PyPI. Keep that in mind and

be wary about installing unknown packages!

Using the Package

The package is now available to use everywhere on the system.

⚠ You may need to restart your Jupyter notebook kernel for the newly installed package to be recognised.

And the scripts are now available as command line commands:

Of course, there’s more to do when taking code from a quick script and turning it into a proper module. We’ll

continue to look at this in the rest of the course, but here are some initial ideas:

Write some unit tests

Contents of Greetings/tests/test_greeter.py:

from greetings.greeter import greet

print(greet("James", "Hetherington"))

Hey, James Hetherington

%%bash
greet --help

usage: greet [-h] [--title TITLE] [--polite] personal family

Generate appropriate greetings

positional arguments:

 personal

 family

optional arguments:

 -h, --help show this help message and exit

 --title TITLE, -t TITLE

 --polite, -p

%%bash
greet James Hetherington
greet --polite James Hetherington
greet James Hetherington --title Dr

Hey, James Hetherington

How do you do, James Hetherington

Hey, Dr James Hetherington

from greetings.greeter import greet

def test_greeter():
 inputs = [
 {"personal": "James", "family": "Hetherington"},
 {"personal": "James", "family": "Hetherington", "polite": True},
 {"personal": "James", "family": "Hetherington", "title": "Dr"},
]
 outputs = [# codes like \x1b[32m are colours
 "\x1b[40m\x1b[33mHey, \x1b[47m\x1b[1m\x1b[31mJames Hetherington",
 "\x1b[40m\x1b[33mHow do you do, \x1b[47m\x1b[1m\x1b[31mJames Hetherington",
 "\x1b[40m\x1b[33mHey, \x1b[44m\x1b[37mDr \x1b[47m\x1b[1m\x1b[31mJames Hetherington",
]
 for inp, out in zip(inputs, outputs):
 assert greet(**inp) == out

%%bash
cd Greetings
pytest

Write a README file

e.g.:

Write a license file

e.g.:

Write a citation file

e.g.:

You may well want to formalise this using the codemeta.json standard - this doesn’t have wide adoption yet, but we

recommend it.

Documentation

This documentation string explains how to use the function; don’t worry about this for now, we’ll consider this

next time.

============================= test session starts ==============================

platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0

rootdir: /home/runner/work/rse-course/rse-
course/module06_software_projects/Greetings

plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1

collected 1 item

tests/test_greeter.py . [100%]

============================== 1 passed in 0.01s ===============================

%%writefile Greetings/README.md

Greetings!
==========

This is a very simple example package used as part of the Turing
[Research Software Engineering with Python](https://alan-turing-
institute.github.io/rse-course) course.

Usage:

Invoke the tool with greet <FirstName> <Secondname>

Overwriting Greetings/README.md

%%writefile Greetings/LICENSE.md

(C) The Alan Turing Institute 2021

This "greetings" example package is granted into the public domain.

Overwriting Greetings/LICENSE.md

%%writefile Greetings/CITATION.md

If you wish to refer to this course, please cite the URL
https://alan-turing-institute.github.io/rse-course

Portions of the material are taken from Software Carpentry
http://swcarpentry.org

Overwriting Greetings/CITATION.md

def greet(personal, family, title="", polite=False):
 """Generate a greeting string for a person.

 Parameters

 personal: str
 A given name, such as Will or Jean-Luc
 family: str
 A family name, such as Riker or Picard
 title: str
 An optional title, such as Captain or Reverend
 polite: bool
 True for a formal greeting, False for informal.

 Returns

 string
 An appropriate greeting
 """

 greeting = "How do you do, " if polite else "Hey, "
 greeting = Fore.GREEN + greeting
 if title:
 greeting += Fore.BLUE + title + " "

 greeting += Fore.RED + personal + " " + family + "."
 return greeting

https://codemeta.github.io/

6.5 Documentation

Estimated time for this notebook: 10 minutes

Documentation is hard

Good documentation is hard, and very expensive.

Bad documentation is detrimental.

Good documentation quickly becomes bad if not kept up-to-date with code changes.

Professional companies pay large teams of documentation writers.

Prefer readable code with tests and vignettes

If you don’t have the capacity to maintain great documentation, focus on:

Readable code

Automated tests

Small code samples demonstrating how to use the api

Comment-based Documentation tools

Documentation tools can produce extensive documentation about your code by pulling out comments near the beginning

of functions, together with the signature, into a web page.

The most popular is Doxygen

Have a look at an example of some Doxygen output

Sphinx is nice for Python, and works with C++ as well. Here’s some Sphinx-generated output and the corresponding

source code Breathe can be used to make Sphinx and Doxygen work together.

Roxygen is good for R.

Example of using Sphinx

Write some docstrings

We’re going to document our “greeter” example using docstrings with Sphinx.

There are various conventions for how to write docstrings, but the native sphinx one doesn’t look nice when used

with the built in help system.

In writing Greeter, we used the docstring conventions from NumPy. So we use the numpydoc sphinx extension to

support these.

Set up sphinx

Invoke the sphinx-quickstart command to build Sphinx’s configuration file automatically based on questions at the

command line:

(docs is the name of the directory where the documentation will be stored)

Which responds:

import greetings

help(greetings.greeter.greet)

Help on function greet in module greetings.greeter:

greet(personal, family, title='', polite=False)
 Generate a greeting string for a person.

 Parameters

 personal: str
 A given name, such as Will or Jean-Luc
 family: str
 A family name, such as Riker or Picard
 title: str
 An optional title, such as Captain or Reverend
 polite: bool
 True for a formal greeting, False for informal.

 Returns

 string
 An appropriate greeting

"""
Generate a greeting string for a person.

Parameters

personal: str
 A given name, such as Will or Jean-Luc

family: str
 A family name, such as Riker or Picard
title: str
 An optional title, such as Captain or Reverend
polite: bool
 True for a formal greeting, False for informal.

Returns

string
 An appropriate greeting
"""

sphinx-quickstart docs

http://www.stack.nl/~dimitri/doxygen/
http://www.bempp.org/cppref/2.0/group__abstract__boundary__operators.html
http://sphinx-doc.org/
http://www.bempp.org/pythonref/2.0/bempp_visualization2.html
https://github.com/bempp/bempp/blob/master/python/bempp/visualization2.py
http://michaeljones.github.io/breathe/
http://www.rstudio.com/ide/docs/packages/documentation
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://sphinx-doc.org/tutorial.html

and then look at and adapt the generated config, which in our case is a file called conf.py in the docs/ directory

of the project. This contains the project’s Sphinx configuration, as Python variables. Let’s populate the extensions

field with some extensions we’d like to use (see the extensions documentation):

We’ve added some other configuration options to conf.py the file in the repo too (but normally you’ll use

sphinx-quickstart).

Define the root documentation page

Sphinx uses RestructuredText another wiki markup format similar to Markdown.

sphinx-quickstart creates a template index.rst for us, which can be edited to contain any preamble text you want. Here

it is:

And a lightly modified version:

Run sphinx

We can run Sphinx using:

Welcome to the Sphinx 4.4.0 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Selected root path: docs

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]: n

The project name will occur in several places in the built documentation.
> Project name: greetings
> Author name(s): The Alan Turing Institute
> Project release []: 0.0.1

If the documents are to be written in a language other than English,
you can select a language here by its language code. Sphinx will then
translate text that it generates into that language.

For a list of supported codes, see
https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-language.
> Project language [en]:

Creating file module06_software_projects/Greetings/docs/conf.py.
Creating file module06_software_projects/Greetings/docs/index.rst.
Creating file module06_software_projects/Greetings/docs/Makefile.
Creating file module06_software_projects/Greetings/docs/make.bat.

Finished: An initial directory structure has been created.

You should now populate your master file module06_software_projects/Greetings/docs/index.rst
and create other documentation source files. Use the Makefile to build the docs, like so:
 make builder
where "builder" is one of the supported builders, e.g. html, latex or linkcheck.

#Add any Sphinx extension module names here, as strings. They can be
#extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = [
 "sphinx.ext.autodoc", # Support automatic documentation
 "sphinx.ext.coverage", # Automatically check if functions are documented
 "sphinx.ext.mathjax", # Allow support for algebra
 "sphinx.ext.viewcode", # Include the source code in documentation
 "numpydoc", # Support NumPy style docstrings
]

.. greetings documentation master file, created by
 sphinx-quickstart on Thu Aug 4 11:47:51 2022.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

Welcome to greetings's documentation!
=====================================

.. toctree::
 :maxdepth: 2
 :caption: Contents:

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

%%writefile Greetings/docs/index.rst
Welcome to Greetings's documentation!
=====================================
Simple "Hello, James" module developed to teach research software engineering.

.. toctree::
 :maxdepth: 2
 :caption: Contents:

Functions
=========

.. autofunction:: greetings.greeter.greet

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

Overwriting Greetings/docs/index.rst

https://www.sphinx-doc.org/en/master/usage/extensions/index.html
http://docutils.sourceforge.net/rst.html

Sphinx output

Sphinx’s output is html, if you open the Greetings/docs/output/index.html file you’ll see a simple documentation page

for our greetings package has been created. We just created a simple single function’s documentation, but Sphinx

will create multiple nested pages of documentation automatically for many functions.

Hosting documentation

If you’d like to make your documentation available online two of the most popular (free) hosting services are

GitHub pages, and Read the docs. Both can host documentation generated by Sphinx and have ways to automatically

build and update your documentation when changes are made.

We have the example Greetings docs page on GitHub pages here: https://alan-turing-institute.github.io/Greetings/,

which is built using this GitHub Actions workflow.

6.6 Software Project Management

Estimated time for this notebook: 5 minutes

Software Engineering Stages

Requirements

Functional Design

Architectural Design

Implementation

Integration

Requirements Engineering

Requirements capture obviously means describing the things the software needs to be able to do.

A common approach is to write down lots of “user stories”, describing how the software helps the user achieve

something:

%%bash
cd Greetings/
sphinx-build docs docs/output

Running Sphinx v4.5.0

making output directory... done

WARNING: html_static_path entry '_static' does not exist

[autosummary] generating autosummary for: index.rst

building [mo]: targets for 0 po files that are out of date

building [html]: targets for 1 source files that are out of date

updating environment: [new config] 1 added, 0 changed, 0 removed

reading sources... [100%] index

looking for now-outdated files... none found

pickling environment... done

checking consistency... done

preparing documents... done

writing output... [100%] index

generating indices... genindex done

highlighting module code... [100%] greetings.greeter

writing additional pages... search done

copying static files... done

copying extra files... done

dumping search index in English (code: en)... done

dumping object inventory... done

build succeeded, 1 warning.

The HTML pages are in docs/output.

https://pages.github.com/
https://readthedocs.org/
https://alan-turing-institute.github.io/Greetings/
https://github.com/alan-turing-institute/Greetings/blob/main/.github/workflows/docs.yml

As a clinician, when I finish an analysis, I want a report to be created on the test results, so that I

can send it to the patient.

As a role, when condition or circumstance applies I want a goal or desire so that benefits occur.

Beware “stated” verus “revealed” requirements

Recording requirements early is useful, but beware that there is a risk that these “stated” requirements, only

capture what you think you know at the begining of the project. As the project proceeds, you and your users learn

more your understanding of your requirements may change. This can be especially true when software deals with

abstract concepts.

Ultimely what does (or does not) satsify your users are your “revealed” requirements.

Your project management needs to allow of (or even encourage) this evolution of your requirements.

Functional and architectural design

Engineers try to separate the functional design, how the software appears to and is used by the user, from the

architectural design, how the software achieves that functionality.

Changes to functional design require users to adapt, and are thus often more costly than changes to architectural

design.

Waterfall

The Waterfall design philosophy argues that the elements of design should occur in order: first requirements

capture, then functional design, then architectural design. This approach is based on the idea that if a mistake is

made in the design, then programming effort is wasted, so significant effort is spent in trying to ensure that

requirements are well understood and that the design is correct before programming starts.

Why Waterfall?

Without a design approach, programmers resort to designing as we go, typing in code, trying what works, and making

it up as we go along. When trying to collaborate to make software with others this can result in lots of wasted

time, software that only the author understands, components built by colleagues that don’t work together, or code

that the programmer thinks is nice but that doesn’t meet the user’s requirements.

Problems with Waterfall

Waterfall results in a contractual approach to development, building an us-and-them relationship between users,

business types, designers, and programmers.

I built what the design said, so I did my job.

Waterfall results in a paperwork culture, where people spend a long time designing standard forms to document each

stage of the design, with less time actually spent making things.

Waterfall results in excessive adherence to a plan, even when mistakes in the design are obvious to people doing

the work.

Software is not made of bricks

The waterfall approach to software engineering comes from the engineering tradition applied to building physical

objects, where Architects and Engineers design buildings, and builders build them according to the design.

Software is intrinsically different:

Software is not the same ‘stuff’ as that from which physical systems are constructed. Software systems

differ in material respects from physical systems. Much of this has been rehearsed by Fred Brooks in his

classic ‘No Silver Bullet’ paper. First, complexity and scale are different in the case of software

systems: relatively functionally simple software systems comprise more independent parts, placed in

relation to each other, than do physical systems of equivalent functional value. Second, and clearly

linked to this, we do not have well developed components and composition mechanisms from which to build

software systems (though clearly we are working hard on providing these) nor do we have a straightforward

mathematical account that permits us to reason about the effects of composition.

Third, software systems operate in a domain determined principally by arbitrary rules about information

and symbolic communication whilst the operation of physical systems is governed by the laws of physics.

Finally, software is readily changeable and thus is changed, it is used in settings where our uncertainty

leads us to anticipate the need to change.

– Prof. Anthony Finkelstein, UCL Dean of Engineering, and Professor of Software Systems Engineering

The Agile Manifesto

In 2001, authors including Martin Folwer, Ward Cunningham and Kent Beck met in a Utah ski resort, and published the

following manifesto.

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others do it. Through this work we

have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Agile is not absence of process

http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=1663532&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1663532
http://blog.prof.so/
http://agilemanifesto.org/

The Agile movement is not anti-methodology, in fact, many of us want to restore credibility to the word

methodology. We want to restore a balance. We embrace modeling, but not in order to file some diagram in a

dusty corporate repository. We embrace documentation, but not hundreds of pages of never-maintained and

rarely-used tomes. We plan, but recognize the limits of planning in a turbulent environment. Those who

would brand proponents of XP or SCRUM or any of the other Agile Methodologies as “hackers” are ignorant of

both the methodologies and the original definition of the term hacker

– Jim Highsmith.

Elements of an Agile Process

Continuous delivery

Self-organising teams

Iterative development

Ongoing design

Ongoing Design

Agile development doesn’t eschew design. Design documents should still be written, but treated as living documents,

updated as more insight is gained into the task, as work is done, and as requirements change.

Use of a Wiki or version control repository to store design documents thus works much better than using Word

documents!

Test-driven design and refactoring are essential techniques to ensure that lack of “Big Design Up Front” doesn’t

produce badly constructed spaghetti software which doesn’t meet requirements. By continously scouring our code for

smells, and stopping to refactor, we evolve towards a well-structured design with weakly interacting units. By

starting with tests which describe how our code should behave, we create executable specifications, giving us

confidence that the code does what it is supposed to.

Iterative Development

Agile development maintains a backlog of features to be completed and bugs to be fixed. In each iteration, we start

with a meeting where we decide which backlog tasks will be attempted during the development cycle, estimating how

long each will take, and selecting an achievable set of goals for the “sprint”. At the end of each cycle, we review

the goals completed and missed, and consider what went well, what went badly, and what could be improved.

We try not to add work to a cycle mid-sprint. New tasks that emerge are added to the backlog, and considered in the

next planning meeting. This reduces stress and distraction.

Continuous Delivery

In agile development, we try to get as quickly as possible to code that can be demonstrated to clients. A regular

demo of progress to clients at the end of each development iteration says so much more than sharing a design

document. “Release early, release often” is a common slogan. Most bugs are found by people using code – so exposing

code to users as early as possible will help find bugs quickly.

Self-organising teams

Code is created by people. People work best when they feel ownership and pride in their work. Division of

responsiblities into designers and programmers results in a “Code Monkey” role, where the craftspersonship and

sense of responsibility for code quality is lost. Agile approaches encourage programmers, designers, clients, and

businesspeople to see themselves as one team, working together, with fluid roles. Programmers grab issues from the

backlog according to interest, aptitude, and community spirit.

Agile in Research

Agile approaches, where we try to turn the instincts and practices which emerge naturally when smart programmers

get together into well-formulated best practices, have emerged as antidotes to both the chaotic free-form typing in

of code, and the rigid paperwork-driven approaches of Waterfall.

If these approaches have turned out to be better even in industrial contexts, where requirements for code can be

well understood, they are even more appropriate in a research context, where we are working in poorly understood

fields with even less well captured requirements.

Conclusion

Don’t ignore design

Do try to write down some user stories

See if there’s a known design pattern that will help

Do try to think about how your code will work before you start typing

Do maintain design documents.

BUT

Do change your design as you work, updating the documents if you have them

Don’t go dark – never do more than a couple of weeks programming without showing what you’ve done to colleagues

Don’t get isolated from the reasons for your code’s existence, stay involved in the research, don’t be a Code

Monkey.

Do keep a list of all the things your code needs, estimate and prioritise tasks carefully.

Software Project Management is a huge topic and we’ve only touched on here. It is worth learning both from

experience and from reading and other shared knowledge throughout your career

Further reading

Below is a small seleciton of the many books and articales writen on this topic:

The Mythical Man Month https://en.wikipedia.org/wiki/The_Mythical_Man-Month First published in 1975, but still

worth reading.

Peopleware https://en.wikipedia.org/wiki/Peopleware:_Productive_Projects_and_Teams “The major problems of our

work are not so much technological as sociological in nature” The first half of the book rails against office

design typical of the 1990’s, but fortunantly is become less comon in the era of hybrid/remote working. The

http://open.spotify.com/track/1rIFZk9tTUtHP3vULR5wXe
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/Peopleware:_Productive_Projects_and_Teams

secound half looks at team dynamics, managing risks in software projects, incremental delivery, working with

non-technical stakeholders etc.

Manifesto for Agile Software Development https://agilemanifesto.org/principles.html _The_0 Manifesto.

Agile is Dead https://www.youtube.com/watch?v=a-BOSpxYJ9M A talk given by one of the Manifesto’s signators,

over a decade after the origional manifesto, expressing his fustration at what “Agile” had become.

Five Worlds https://www.joelonsoftware.com/2002/05/06/five-worlds/ Argues that different software development

contexts need different approaches (techniquies, methodologies etc). The specific contexts are slightly dated,

but the core advice is not - you should interperate any software development advise by considering the context

from which it was derived.

6.7 Software Licensing

Estimated time for this notebook: 10 minutes

Disclaimer

Here we attempt to give some basic advice on choosing a license for your software. But:

we are NOT lawyers

opinions differ (and flamewars are boring)

this training does NOT constitute legal advice.

For an in-depth discussion of software licenses, read the O’Reilly book.

Your organisation may have policies about applying licenses to code you create while you work there. This training

doesn’t address this issue, and does not represent an official policy – seek advice from your supervisor or manager

if concerned.

Choose a license

It is important to choose a license and to create a license file to tell people what it is.

The license lets people know whether they can reuse your code and under what terms. This course has one, for

example.

Your license file should typically be called LICENSE.txt or similar. GitHub will offer to create a license file

automatically when you create a new repository.

See GitHub’s advice on how to choose a license

Open source doesn’t stop you making money

A common misconception about open source software is the thought that open source means you can’t make any money.

This is wrong.

Plenty of people open source their software and profit from:

The software under a different license e.g. Saxon

Consulting. For example: Continuum who help maintain NumPy

Manuals. For example: VTK

Add-ons. For example: Puppet

Server software, which open source client software interacts with. For example: GitHub API clients

Plagiarism vs promotion

Many researchers worry about people stealing their work if they open source their code. But often the biggest

problem is not theft, but the fact no one is aware of your work.

Open source is a way to increase the probability that someone else on the planet will care enough about your work

to cite you.

So when thinking about whether to open source your code, think about whether you’re more worried about anonymity or

theft.

Your code is good enough

New coders worry that they’ll be laughed at if they put their code online. Don’t worry. Everyone, including people

who’ve been coding for decades, writes shoddy code that is full of bugs.

The only thing that will make your code better, is other people reading it.

For small scripts that no one but you will ever use, my recommendation is to use an open repository anyway. Find a

buddy, and get them to comment on it.

Worry about license compatibility and proliferation

Not all open source code can be used in all projects. Some licenses are legally incompatible.

This is a huge and annoying problem. As an author, you might not care, but you can’t anticipate the exciting uses

people might find by mixing your code with someone else’s.

Use a standard license from the small list that are well-used. Then people will understand. Don’t make up your own.

When you’re about to use a license, see if there’s a more common one which is recommended, e.g.: using the

opensource.org proliferation report

Academic license proliferation

Academics often write their own license terms for their software.

For example:

https://agilemanifesto.org/principles.html
https://www.youtube.com/watch?v=a-BOSpxYJ9M
https://www.joelonsoftware.com/2002/05/06/five-worlds/
https://www.oreilly.com/library/view/understanding-open-source/0596005814/bk01-toc.html
https://github.com/alan-turing-institute/rse-course/blob/main/LICENSE.md
http://choosealicense.com/
http://saxon.sourceforge.net/
http://continuum.io/consulting
http://www.vtk.org/
http://puppetlabs.com/puppet/enterprise-vs-open-source
https://github.com/octokit/octokit.rb
http://opensource.org/proliferation-report

XXXX NON-COMMERCIAL EDUCATIONAL LICENSE Copyright (c) 2013 Prof. Foo. All rights reserved.

You may use and modify this software for any non-commercial purpose within your educational institution.

Teaching, academic research, and personal experimentation are examples of purpose which can be non-

commercial.

You may redistribute the software and modifications to the software for non-commercial purposes, but only

to eligible users of the software (for example, to another university student or faculty to support joint

academic research).

Please don’t do this. Your desire to slightly tweak the terms is harmful to the future software ecosystem. Also,

Unless you are a lawyer, you cannot do this safely!

Licenses for code, content, and data.

Licenses designed for code should not be used to license data or prose.

Don’t use Creative Commons for software, or GPL for a book.

Licensing issues

Permissive vs share-alike

Non-commercial and academic Use Only

Patents

Use as a web service

Permissive vs share-alike

Some licenses require all derived software to be licensed under terms that are similarly free. Such licenses are

called “Share Alike” or “Copyleft”.

Licenses in this class include the GPL.

Those that don’t are called “Permissive”

These include Apache, BSD, and MIT licenses.

If you want your code to be maximally reusable, use a permissive license If you want to force other people using

your code to make derivatives open source, use a copyleft license.

If you want to use code that has a permissive license, it’s safe to use it and keep your code secret. If you want

to use code that has a copyleft license, you’ll have to release your code under such a license.

Academic use only

Some researchers want to make their code free for ‘academic use only’. None of the standard licenses state this,

and this is a reason why academic bespoke licenses proliferate.

However, there is no need for this, in our opinion.

Use of a standard Copyleft license precludes derived software from being sold without also publishing the source

So use of a Copyleft license precludes commercial use.

This is a very common way of making a business from open source code: offer the code under GPL for free but offer

the code under more permissive terms, allowing for commercial use, for a fee.

Patents

Intellectual property law distinguishes copyright from patents. This is a complex field, which I am far from

qualified to teach!

People who think carefully about intellectual property law distinguish software licenses based on how they address

patents. Very roughly, if a you want to ensure that contributors to your project can’t then go off and patent their

contribution, some licenses, such as the Apache license, protect you from this.

Use as a web service

If I take copyleft code, and use it to host a web service, I have not sold the software.

Therefore, under some licenses, I do not have to release any derivative software. This “loophole” in the GPL is

closed by the AGPL (“Affero GPL”)

Library linking

If I use your code just as a library, without modifying it or including it directly in my own code, does the

copyleft term of the GPL apply?

Yes

If you don’t want it to, use the LGPL. (“Lesser GPL”). This has an exception for linking libraries.

Referencing the license in every file

Some licenses require that you include license information in every file. Others do not.

Typically, every file should contain something like:

Check your license at opensource.org for details of how to apply it to your software. For example, for the GPL

Citing software

Almost all software licenses require people to credit you for what they used (“attribution”).

(C) The Alan Turing Institute 2010-2020
This software is licensed under the terms of the <foo license>
See <somewhere> for the license details.

http://opensource.org/
http://opensource.org/licenses/GPL-3.0#howto

In an academic context, it is useful to offer a statement as to how best to do this, citing which paper to cite in

all papers which use the software.

This is best done with a CITATION file in your repository.

To cite ggplot2 in publications, please use:

H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York,

1.

A BibTeX entry for LaTeX users is

@Book{, author = {Hadley Wickham}, title = {ggplot2: elegant graphics for data analysis}, publisher =

{Springer New York}, year = {2009}, isbn = {978-0-387-98140-6}, url = {http://had.co.nz/ggplot2/book}, }

Publishing software

If you’d like to make your software more easily citable, there are a few options for creating software papers and

DOIs. These include:

Software journals such as The Jounal of Open Source Software (JOSS), which publishes software with a short

paper/codebase description attached,

File hosting services like Zenodo, which will generate a DOI you can use to link to a specific version of your

code.

Open source does not equal free maintenance

One common misunderstanding of open source software is that you’ll automatically get loads of contributors from

around the internets. This is wrong. Most open source projects get no commits from anyone else.

Open source does not guarantee your software will live on with people adding to it after you stop working on it.

Learn more about these issues from the website of the Software Sustainability Institute

Example

This course is distributed under the Creative Commons By Attribution license, which means you can modify and reuse

the materials, so long as you credit the original authors: The Alan Turing Institute’s Research Engineering Group

and UCL Research IT Services.

6.8 Managing software issues

Estimated time for this notebook: 5 minutes

Issues

Code has bugs. It also has features, things it should do.

A good project has an organised way of managing these. Generally you should use an issue tracker.

Some Issue Trackers

There are lots of good issue trackers.

The most commonly used open source ones are Trac and Redmine.

Cloud based issue trackers include Lighthouse and GitHub.

Commercial solutions include Jira.

In this course, we’ll be using the GitHub issue tracker.

Anatomy of an issue

There are three main pieces of information required when someone reports a bug:

How to reproduce

Expected outcome

Actual outcome

(Note how conceptually simular this is to the anatomy of a test)

There are other fields that can be useful within a software development team for prioritisation and tracking (but

don’t ask an user to specify these):

Reporter

Description

Owner

Type [Bug, Feature]

Component

Status

Severity

Reporting a Bug

The description should make the bug reproducible:

Version

Steps

If possible, submit a minimal reproducing code fragment.

Owning an issue

Whoever the issue is assigned to works next.

http://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
http://had.co.nz/ggplot2/book
https://joss.theoj.org/
https://zenodo.org/
http://software.ac.uk/resources/about
https://creativecommons.org/licenses/by/3.0/
https://www.turing.ac.uk/research/research-engineering
http://www.ucl.ac.uk/research-it-services/homepage
http://trac.edgewall.org/
http://www.redmine.org/
http://lighthouseapp.com/
https://github.com/blog/831-issues-2-0-the-next-generation
https://www.atlassian.com/software/jira
https://www.joelonsoftware.com/2000/11/08/painless-bug-tracking/

If an issue needs someone else’s work, assign it to them.

Status

Submitted

Accepted

Underway

Blocked

Resolutions

Resolved

Will Not Fix

Not reproducible

Not a bug (working as intended)

Bug triage

Some organisations use a severity matrix based on:

Severity [Wrong answer, crash, unusable, workaround, cosmetic…]

Frequency [All users, most users, some users…]

The backlog

The list of all the bugs that need to be fixed or features that have been requested is called the “backlog”.

Development cycles

Development goes in cycles.

Cycles range in length from a week to three months.

In a given cycle:

Decide which features should be implemented

Decide which bugs should be fixed

Move these issues from the Backlog into the current cycle. (Aka Sprint)

GitHub issues

GitHub doesn’t have separate fields for status, component, severity etc. Instead, it just has labels, which you can

create and delete.

See for example Jupyter

6.9 Exercise: Packaging Troll Treasure

We are going to look at a simplified version of a game with a long history. Games of this kind have been used as

test-beds for development of artificial intelligence.

A dungeon is a network of connected rooms on a square grid. One or more rooms contain treasure. Your character, the

adventurer, moves between rooms, looking for the treasure. A troll is also in the dungeon and moves between rooms.

If the troll catches the adventurer, you lose. If you find treasure before being eaten, you win. (In this simple

version, we do not consider the need to leave the dungeon.)

The starting rooms for the adventurer and troll are given in the definition of the dungeon.

The way the adventurer and troll move is called a strategy. Different strategies are more or less likely to

succeed. There are two strategies in the provided code - random movement, and movement controlled by human input.

The code provides a function to play a single game, or to simulate many games and estimate the probability the

adventurer or troll wins.

In this exercise, you will convert the code provided in this Jupyter notebook into a proper Python package.

What to do

Using the course material from this module to help:

1. Briefly familiarise yourself with the code below and how it works/runs, focusing on the different classes and

functions that are defined rather than the implementation details. And try running a game in the notebook (see the

Playing Games section).

2. Make a directory for your project

3. Create a directory to contain your package (in your project directory) and copy the code from this notebook to

it using multiple .py files. Remember to add __init__.py file(s).

4. Create a pyproject.toml file to specify the metadata and dependencies for the package. The dependencies are PyYAML

version 6.0 and art version 5.7.

5. Create a virtual environment and activate it

6. Install the package in your virtual environment.

⚠ You might get an error that says something like error: Multiple top-level packages discovered in a flat-layout.

This is because setuptools has detected multiple directories that look like python packages and doesn’t know

which one to choose. You should be able to fix this by adding (only) one of these sections to your

pyproject.toml file:

or

[tool.setuptools]
packages = ["<my_package_directory>"]

https://github.com/jupyter/notebook/issues?labels=bug&page=1&state=open
https://en.wikipedia.org/wiki/Hunt_the_Wumpus
https://pypi.org/project/PyYAML/
https://pypi.org/project/art/

replacing <my_package_directory> with the name of the directory that contains your package (.py files)

7. Check that you can import your package and run a script to play a game.

8. Make a command-line interface:

Use argparse to create a function that can be called from the command-line with the path to a dungeon YAML file,

and the option to either run a single game or calculate probabilities.

Add a script to call your function to the [project.scripts] section of pyproject.toml

Reinstall your package and verify the executable you defined can now be run from a terminal.

Extensions

If you’d like to take this further here are some other things you could try, depending on your interests:

9. Create a GitHub repo for your project. Try installing the package from GitHub.

10. Add README, LICENSE, and CITATION files to your project directory.

11. Improve documentation

Add docstrings to functions to explain what they do, their inputs, and outputs (e.g. in numpydoc format)

Build a documentaion web-site with sphinx

Host the documentation on GitHub pages

12. Add unit tests

Write unit tests, such as to verify the outcomes of the provided test_xxx.yml dungeon files.

Add pytest as a development dependency for your package (and install it)

Run the tests and verify they pass

13. Improve or extend the code (you may like to revisit this after the next module):

Specify your own dungeons or create a function to auto-generate them

Create new movement behaviour classes for adventurers and trolls

Look for places the code could be refactored (to reduce repetition, for example)

Code

Rooms

The direction function determines the direction from grid point a to grid point b (length two tuples, x and y

coordinte) if they are neighbouring points in the grid, or None otherwise:

A Room has a location (point) and optionally can link to other Rooms at neighbouring grid points. :

Rooms is a collection of rooms (that must be on a square grid), with each room stored in a dictionary keyed by its

(x, y) coordinate (point):

[tool.setuptools.packages]
include = ["<my_package_directory>*"]

def direction(point_a, point_b):
 """
 Returns the direction from point_a to point_b, or None if they
 are not neighhbouring grid points.
 """
 if point_b == point_a:
 return "nowhere"
 if point_b[1] == point_a[1]:
 if point_b[0] == point_a[0] - 1:
 return "left"
 if point_b[0] == point_a[0] + 1:
 return "right"
 if point_b[0] == point_a[0]:
 if point_b[1] == point_a[1] - 1:
 return "up"
 if point_b[1] == point_a[1] + 1:
 return "down"

 return None

class Room:
 def __init__(self, point, links=None):
 self.point = tuple(point) # grid point of this room
 self.links = links # other rooms this rooms connects to
 self._validate_links()

 def __contains__(self, point):
 """
 `(x, y) in room_instance` returns `True` if `room_instance` has a link to
 a room at point `(x, y)`
 """
 return point in [link.point for link in self.links]

 def _validate_links(self):
 """
 Verifies all linked rooms are at neighbouring grid points
 """
 if not self.links:
 return
 for link in self.links:
 if not direction(self.point, link.point):
 raise ValueError(
 f"Invalid link: {link.point} is not connected to {self.point}"
)

Treasure

Treausre has a location (point) and a single character symbol to represent it when printing dungeon maps:

Agents

The Agent class stores general properties used by all agents (trolls or adventurers):

RandomAgents choose to move to a connecting room at random (or stay where they are):

HumanAgents ask the user where to move next:

class Rooms:
 """
 Collection of rooms
 """

 def __init__(self, rooms):
 # rooms dictionary keyed by (x, y) coordinate (grid cell indices)
 self.rooms = {r.point: r for r in rooms}

 def __iter__(self):
 """
 Allows Rooms objects to be iterated over (see Module 7)
 """
 return iter(self.rooms.values())

 def __getitem__(self, point):
 """
 rooms[(x, y)] will retrieve the room at coordinate (x, y) (where
 rooms is an instance of the Rooms class)
 """
 return self.rooms[point]

 def __contains__(self, point):
 """
 (x, y) in rooms will return True if a room at coordinates (x, y)
 is in rooms (where rooms is an instance of the Rooms class)
 """
 return point in self.rooms

 @classmethod
 def from_list(cls, room_list):
 rooms = [
 Room(room["point"], [Room(link) for link in room["links"]])
 for room in room_list
]
 return cls(rooms)

class Treasure:
 def __init__(self, point, symbol):
 self.point = tuple(point) # (x, y) grid location of the treasure
 self.symbol = symbol # single char symbol to show the treasure on dungeon
maps

 @classmethod
 def from_dict(cls, treasure_dict):
 return cls(treasure_dict["point"], treasure_dict["symbol"])

class Agent:
 """
 Base functionality to create and load (but not move) an Agent
 """

 def __init__(self, point, name, symbol, verbose=True, allow_wait=True,
**kwargs):
 self.point = tuple(point) # (x, y) grid location of the agent
 self.name = name # e.g. adventurer or troll
 self.symbol = symbol # single char symbol to show the agent on dungeon
maps
 self.verbose = verbose # print output on agent behaviour if True
 self.allow_wait = allow_wait # allow the agent to move nowhere

 def move(self, rooms):
 raise NotImplementedError("Use an Agent base class")

 @classmethod
 def from_dict(cls, agent_dict):
 return cls(
 agent_dict["point"],
 agent_dict["name"],
 agent_dict["symbol"],
 allow_wait=agent_dict["allow_wait"],
)

import random

class RandomAgent(Agent):
 """
 Agent that makes random moves
 """

 def move(self, rooms):
 if not rooms[self.point].links:
 # this room isn't linked to anything, can't move
 if self.verbose:
 print(f"{self.name} is trapped")
 return

 # pick a random room to move to
 options = rooms[self.point].links
 if self.allow_wait:
 options.append(self)
 new_room = random.choice(options)

 if self.verbose:
 move = direction(self.point, new_room.point)
 print(f"{self.name} moves {move}")
 self.point = new_room.point

Dungeons

Dungeon have rooms, a piece of treasure, an adventurer, and a troll, and provide the functionality to update the

agents, check whether the treasure or adventurer have found, and to draw a map of the dungeon:

class HumanAgent(Agent):
 """
 Agent that prompts the user where to move next
 """

 def move(self, rooms):
 if not rooms:
 if self.verbose:
 print(f"{self.name} is trapped")
 return
 # populate movement options depending on available rooms
 if self.allow_wait:
 options = ["wait"]
 else:
 options = []
 if (self.point[0] - 1, self.point[1]) in rooms:
 options.append("left")
 if (self.point[0] + 1, self.point[1]) in rooms:
 options.append("right")
 if (self.point[0], self.point[1] - 1) in rooms:
 options.append("up")
 if (self.point[0], self.point[1] + 1) in rooms:
 options.append("down")

 # prompt user for movement input
 choice = None
 while choice not in options:
 choice = input(f"Where will {self.name} move \n{options}? ")

 # move the agent
 if choice == "left":
 self.point = (self.point[0] - 1, self.point[1])
 elif choice == "right":
 self.point = (self.point[0] + 1, self.point[1])
 elif choice == "up":
 self.point = (self.point[0], self.point[1] - 1)
 elif choice == "down":
 self.point = (self.point[0], self.point[1] + 1)

import yaml

class Dungeon:
 """
 Dungeon with:
 - Connected set of rooms on a square grid
 - The location of some treasure
 - An adventurer agent with an initial position
 - A troll agent with an initial position
 """

 def __init__(self, rooms, treasure, adventurer, troll, verbose=True):
 self.rooms = rooms
 self.treasure = treasure
 self.adventurer = adventurer
 self.troll = troll
 self.verbose = True

 # the extent of the square grid
 self.xlim = (
 min(r.point[0] for r in self.rooms),
 max(r.point[0] for r in self.rooms),
)
 self.ylim = (
 min(r.point[1] for r in self.rooms),
 max(r.point[1] for r in self.rooms),
)

 self._validate()

 def _validate(self):
 if self.treasure.point not in self.rooms:
 raise ValueError(f"Treasure{self.treasure.point} is not in the
dungeon")
 if self.adventurer.point not in self.rooms:
 raise ValueError(
 f"{self.adventure.name}{self.adventurer.point} is not in the
dungeon"
)
 if self.troll.point not in self.rooms:
 raise ValueError(
 f"{self.troll.name}{self.troll.point} is not in the dungeon"
)

 @classmethod
 def from_file(cls, path):
 with open(path) as f:
 spec = yaml.safe_load(f)

 rooms = Rooms.from_list(spec["rooms"])
 treasure = Treasure.from_dict(spec["treasure"])

 agent_keys = ["adventurer", "troll"]
 agents = {}
 for agent in agent_keys:
 if spec[agent]["type"] == "random":
 agent_class = RandomAgent
 elif spec[agent]["type"] == "human":
 agent_class = HumanAgent
 else:
 raise ValueError(f"Unknown agent type {spec[agent]['type']}")
 agents[agent] = agent_class(**spec[agent])

 return cls(rooms, treasure, agents["adventurer"], agents["troll"])

 def update(self):
 """
 Move the adventurer and the troll
 """
 self.adventurer.move(self.rooms)
 self.troll.move(self.rooms)
 if self.verbose:
 print()
 self.draw()

 def outcome(self):
 """
 Check whether the adventurer found the treasure or the troll
 found the adventurer
 """
 if self.adventurer.point == self.troll.point:
 return -1
 if self.adventurer.point == self.treasure.point:
 return 1
 return 0

 def set_verbose(self, verbose):
 """Set whether to print output"""
 self.verbose = verbose
 self.adventurer.verbose = verbose
 self.troll.verbose = verbose

 def draw(self):
 """Draw a map of the dungeon"""
 layout = ""

 for y in range(self.ylim[0], self.ylim[1] + 1):
 for x in range(self.xlim[0], self.xlim[1] + 1):
 # room and character symbols
 if (x, y) in self.rooms:
 if self.troll.point == (x, y):
 layout += self.troll.symbol
 elif self.adventurer.point == (x, y):
 layout += self.adventurer.symbol
 elif self.treasure.point == (x, y):
 layout += self.treasure.symbol
 else:
 layout += "o"
 else:
 layout += " "

 # horizontal connections
 if ((x, y) in self.rooms) and (((x + 1), y) in self.rooms[(x,
y)]):
 layout += " - "
 else:
 layout += " "

 # vertical connections
 if y < self.ylim[1]:
 layout += "\n"
 for x in range(self.xlim[0], self.xlim[1] + 1):
 if ((x, y) in self.rooms) and ((x, y + 1) in self.rooms[(x,
y)]):
 layout += "|"
 else:
 layout += " "
 if x < self.xlim[1]:
 layout += " "

Games

The Game class runs a dungeon until the adventurer or troll wins, or calls a draw if neither wins in a given number

of steps, and can simulate many games to estimate outcome probabilities:

Playing Games

Dungeon YAML files

Dungeons can be specified with YAML files, and we have provided a few examples in the dungeons/ directory:

The files starting test_ are simlper dungeons with known outcome proabilities (which could be used in unit testing,

for example).

Run a single game

 layout += "\n"

 print(layout)

import copy

from art import tprint

class Game:
 def __init__(self, dungeon):
 self.dungeon = dungeon

 def preamble(self):
 tprint("Troll Treasure\n", font="small")
 print(
 f"""
The {self.dungeon.adventurer.name} is looking for treasure in a mysterious
dungeon.
Will they succeed or be dinner for the {self.dungeon.troll.name} that lurks there?

The map of the dungeon is below:
o : an empty room
o - o : connected rooms
{self.dungeon.troll.symbol} : {self.dungeon.troll.name}
{self.dungeon.adventurer.symbol} : {self.dungeon.adventurer.name}
{self.dungeon.treasure.symbol} : the treasure
 """
)

 def run(self, max_steps=1000, verbose=True, start_prompt=False):
 dungeon = copy.deepcopy(self.dungeon)
 dungeon.set_verbose(verbose)
 if verbose:
 self.preamble()
 dungeon.draw()
 if start_prompt:
 input("\nPress enter to continue...")
 else:
 print("\nLet the hunt begin!")

 for turn in range(max_steps):
 result = dungeon.outcome()
 if result != 0:
 if verbose:
 if result == 1:
 print(
 f"\n{self.dungeon.adventurer.name} gets the treasure
and returns a hero!"
)
 tprint("WINNER", font="small")
 elif result == -1:
 print(f"\n{self.dungeon.troll.name} will eat tonight!")
 tprint("GAME OVER", font="small")
 return result
 if verbose:
 print(f"\nTurn {turn + 1}")
 dungeon.update()
 # no outcome in max steps (e.g. no treasure and troll can't reach
adventurer)
 if verbose:
 print(
 f"\nNo one saw {self.dungeon.adventurer.name} or
{self.dungeon.troll.name} again."
)
 tprint("STALEMATE", font="small")

 return result

 def probability(self, trials=10000, max_steps=1000, verbose=False):
 outcomes = {-1: 0, 0: 0, 1: 0}
 for _ in range(trials):
 result = self.run(max_steps=max_steps, verbose=False)
 outcomes[result] += 1
 for result in outcomes:
 outcomes[result] = outcomes[result] / trials
 return outcomes

import os

os.listdir("dungeons")

['test_lose100.yml',
 'test_win50.yml',
 'test_stalemate.yml',
 'test_win100.yml',
 'dungeon.yml']

d = Dungeon.from_file("dungeons/dungeon.yml")
g = Game(d)
g.run(max_steps=10)

 _____ _ _ _____
|_ _| _ _ ___ | || | |_ _| _ _ ___ __ _ ___ _ _ _ _ ___
 | | | '_|/ _ \| || | | | | '_|/ -_)/ _` |(_-<| || || '_|/ -_)
 |_| |_| ___/|_||_| |_| |_| ___|__,_|/__/ _,_||_| ___|

The Adventurer is looking for treasure in a mysterious dungeon.
Will they succeed or be dinner for the Troll that lurks there?

The map of the dungeon is below:
o : an empty room

o - o : connected rooms
T : Troll
a : Adventurer
* : the treasure

 *
 |
 o - o - o
 | |
o - a o - T
 | |
 o - o - o
 |
 o

Let the hunt begin!

Turn 1
Adventurer moves left
Troll moves left

 *
 |
 o - o - o
 | |
a - o T - o
 | |
 o - o - o
 |
 o

Turn 2
Adventurer moves right
Troll moves down

 *
 |
 o - o - o
 | |
o - a o - o
 | |
 o - o - T
 |
 o

Turn 3
Adventurer moves up
Troll moves nowhere

 *
 |
 a - o - o
 | |
o - o o - o
 | |
 o - o - T
 |
 o

Turn 4
Adventurer moves down
Troll moves up

 *
 |
 o - o - o
 | |
o - a T - o
 | |
 o - o - o
 |
 o

Turn 5
Adventurer moves left
Troll moves right

 *
 |
 o - o - o
 | |
a - o o - T
 | |
 o - o - o
 |
 o

Turn 6
Adventurer moves right
Troll moves left

 *
 |
 o - o - o
 | |
o - a T - o
 | |
 o - o - o
 |
 o

Turn 7
Adventurer moves up
Troll moves nowhere

 *
 |
 a - o - o
 | |
o - o T - o
 | |
 o - o - o
 |
 o

Turn 8
Adventurer moves down
Troll moves nowhere

 *
 |
 o - o - o
 | |
o - a T - o
 | |
 o - o - o
 |
 o

Turn 9
Adventurer moves left

Estimate outcome probabilities

7. Construction and Design
Comments

Coding conventions

Linters

Refactoring

Object Orientation

Design Patterns

Contents
7.0 Construction (5 minutes)

7.1 Comments (15 minutes)

7.2 Coding conventions (10 minutes)

7.3 Linting (15 minutes)

7.4 Refactoring (25 minutes)

7.5 Object-Oriented Design (15 minutes)

7.6 Class design (25 minutes)

7.7 Design Patterns (25 minutes)

Total time: 2 hr2 15 minutes

Exercises

A classroom exercise is included at the end of the module: 7.8 Exercise: Refactoring The Bad Boids. We recommend

that instructors arrange for the exercise to be done in groups. The exercise can also be left as a self-paced

homework assignment if preferred.

7.0 Construction

Estimated time for this notebook: 5 minutes

Construction

Software design gets a lot of press (Object orientation, UML, design patterns).

In this session we’re going to look at advice on software construction.

Construction vs Design

For a given piece of code, there exist several different ways one could write it:

Choice of variable names

Choice of comments

Choice of layout

The consideration of these questions is the area of Software Construction.

Low-level design decisions

We will also look at some of the lower-level software design decisions in the context of this section:

Division of code into subroutines

Subroutine access signatures

Choice of data structures for readability

Algorithms and structures

Troll moves right

 *
 |
 o - o - o
 | |
a - o o - T
 | |
 o - o - o
 |
 o

Turn 10
Adventurer moves right
Troll moves left

 *
 |
 o - o - o
 | |
o - a T - o
 | |
 o - o - o
 |
 o

No one saw Adventurer or Troll again.
 ___ _____ _ _ ___ __ __ _ _____ ___
/ __||_ _| /_\ | | | __|| \/ | /_\ |_ _|| __|
__ \ | | / _ \ | |__ | _| | |\/| | / _ \ | | | _|
|___/ |_| /_/ _\|____||___||_| |_|/_/ _\ |_| |___|

0

d = Dungeon.from_file("dungeons/dungeon.yml")
g = Game(d)
g.probability(max_steps=10)
-1: troll wins, 0: stalemate, +1: adventurer wins

{-1: 0.2186, 0: 0.5935, 1: 0.1879}

We will not, in discussing construction, be looking at decisions as to how design questions impact performance:

Choice of algorithms

Choice of data structures for performance

Choice of memory layout

We will consider these in a future discussion of performance programming.

Architectural design

We will not, in this session, be looking at the large-scale questions of how program components interact, the

stategic choices that govern how software behaves at the large scale:

Where do objects get made?

Which objects own or access other objects?

How can I hide complexity in one part of the code from other parts of the code?

We will consider these in a future session.

Construction

So, we’ve excluded most of the exciting topics. What’s left is the bricks and mortar of software: how letters and

symbols are used to build code which is readable.

Literate programming

In literature, books are enjoyable for different reasons:

The beauty of stories

The beauty of plots

The beauty of characters

The beauty of paragraphs

The beauty of sentences

The beauty of words

Software has beauty at these levels too: stories and characters correspond to architecture and object design, plots

corresponds to algorithms, but the rhythm of sentences and the choice of words corresponds to software

construction.

Programming for humans

Remember you’re programming for humans as well as computers

A program is the best, most rigorous way to describe an algorithm

Code should be pleasant to read, a form of scholarly communication

Read Steve McConnell’s Code Complete.

7.1 Comments

Estimated time for this notebook: 15 minutes

Why comment?

You’re writing code for people, as well as computers.

Comments can help you build code, by representing your design

Comments explain subtleties in the code which are not obvious from the syntax

Comments explain why you wrote the code the way you did

The Pseudocode Programming Process

Start by writing a program in all comments:

One by one, replace these with the equivalent in code

Then, remove only those comments that are now extraneous (see below for examples of extraneous comments)

Who are you writing for?

To find the largest element in an array
Set up a variable to track the largest so far
Loop over every element
- For each element, is it bigger than the previous biggest?
- If so, it's the new biggest
At the end, the biggest so far, is the biggest overall

To find the largest element in an array
def largest(data):
 # Set up a variable to track the largest so far
 biggest_so_far = 0
 # Loop over every element
 for datum in data:
 # For each element, is it bigger than the previous biggest?
 if datum > biggest_so_far:
 # If so, it's the new biggest
 biggest_so_far = datum
 # At the end, the biggest so far, is the biggest overall
 return biggest_so_far

largest([0, 1, 3, 6, 2, 5, 3])

6

To find the largest element in an array
def largest(data):
 # Set up a variable to track the largest so far
 biggest_so_far = 0
 for datum in data:
 # For each element, is it bigger than the previous biggest?
 # If so, it's the new biggest
 if datum > biggest_so_far:
 biggest_so_far = datum
 return biggest_so_far

https://en.wikipedia.org/wiki/Code_Complete

By far the most likely person who will read your code/comments is yourself, maybe in a week’s time, or maybe in

six months time.

Second most likely person in most cases, is someone in your team, or someone else who will probably have a

roughly similar level of expertise, and be trying to do a similar thing.

Write comments with this in mind - try to help the person reading the code to understand what you did and why.

Prefer “in language” comments to comments proper, if we can

More comments doesn’t necessarily mean better - here are some examples of comments that don’t really help the

reader understand the code any better. If we can, it’s nice to find ways to put our description of what the code

does inside the code, instead of as comments. Then, when the code changes, the ‘comments’ stay in sync, beause

they’re part of the code.

For example, we can use a variable name or a function name, to hold what would have been in a comment. Here,

instead of a comment and a one-word function name, we’ve made a longer function name.

Comments which are obvious

Try to use comments to explain why the code does, not just repeat the code in a comment.

Comments which could be replaced by better style

The following piece of code could be a part of a game to move a turtle in a certain direction, with a particular

angular velocity and step size.

we have used comments to make the code readable.

Why not make the code readable instead?

This is probably better. We are using the name of the functions (i.e. turn, move) instead of comments. Therefore,

we’ve got self-documenting code.

Comments which belong in an issue tracker

BUT comments that reference issues in the tracker can be good.

E.g.

is OK. And platforms like GitHub will create a link to it when browsing the code.

Comments which only make sense to the author today

Comments which are unpublishable

Good commenting: pedagogical comments

Code that is good style, but you’re not familiar with, or that colleagues might not be familiar with

def largest_element_in_array(data):
 # Set up a variable to track the largest so far
 biggest_so_far = 0
 for datum in data:
 # For each element, is it bigger than the previous biggest?
 # If so, it's the new biggest
 if datum > biggest_so_far:
 biggest_so_far = datum
 return biggest_so_far

counter = counter + 1 # Increment the counter
for element in array: # Loop over elements
 pass

for i in range(len(agt)): # for each agent
 agt[i].theta += ws[i] # Increment the angle of each agent
 # by its angular velocity
 agt[i].x += r * sin(agt[i].theta) # Move the agent by the step-size
 agt[i].y += r * cos(agt[i].theta) # r in the direction indicated

for agent in agents:
 agent.turn()
 agent.move()

class Agent:
 def turn(self):
 self.direction += self.angular_velocity

 def move(self):
 self.x += Agent.step_length * sin(self.direction)
 self.y += Agent.step_length * cos(self.direction)

x.clear() # Code crashes here sometimes

class Agent:
 pass
 # TODO: Implement pretty-printer method

if x.safe_to_clear(): # Guard added as temporary workaround for #32
 x.clear()

agent.turn() # Turtle Power!
agent.move()
agents[:] = [] # Shredder!

Stupid supervisor made me write this code
So I did it while very very drunk.

Great commenting: reasons and definitions

Comments which explain coding definitions or reasons for programming choices.

Are comments always helpful?

Some authors argue that comments can be dangerous, as they can disincentivise us from trying harder to use variable

names and function names to discribe the code:

The proper use of comments is to compensate for our failure to express yourself in code. Note that I used

the word failure. I meant it. Comments are always failures. – Robert Martin, Clean Code

This is definitely taking things too far, but there’s a little grain of truth in it:

7.2 Coding conventions

Estimated time for this notebook: 10 minutes

One code, many layouts:

Consider the following fragment of python:

this could also have been written:

So many choices

Layout

Naming

Syntax choices

Layout

Layout choices

Brace style

Line length

Indentation

Whitespace/Tabs

Inconsistency will produce a mess in your code! Some choices will make your code harder to read, whereas others may

affect the code. For example, if you copy/paste code with tabs in a place that’s using spaces, they may appear OK

in your screen but it will fail when running it.

Naming Conventions

Camel case is used in the following example, where class name is in UpperCamel, functions in lowerCamel and

underscore_separation for variables names:

This is how you define a decorator in python
See https://wiki.python.org/moin/PythonDecorators
def double(decorated_function):
 # Here, the result function calls the decorated_function
 # twice, first on the entry input and then again on the
 # output of that
 # the decorated function
 def result_function(entry):
 return decorated_function(decorated_function(entry))

 # The returned result is a function
 return result_function

@double
def try_me_twice():
 pass

def __init__(self):
 self.angle = 0 # clockwise from +ve y-axis
 nonzero_indices = [] # Use sparse model as memory constrained

import species

def AddToReaction(name, reaction):
 reaction.append(species.Species(name))

from species import Species

def add_to_reaction(a_name, a_reaction):
 l_species = Species(a_name)
 a_reaction.append(l_species)

reaction = {
 "reactants": ["H", "H", "O"],
 "products": ["H2O"]
}

reaction2 = {
 "reactants":
 [
 "H",
 "H",
 "O"
],
 "products": [
 "H2O"
]
}

class ClassName:
 def methodName(self, variable_name):
 self.instance_variable = variable_name

https://en.wikipedia.org/wiki/Camel_case

This example uses underscore_separation for all the names:

The usual Python convention (see PEP8) is UpperCamel for class names, and underscore_separation for function and

variable names:

However, particular projects may have their own conventions (and you will even find Python standard libraries that

don’t follow these conventions).

Newlines

Newlines make code easier to read

Newlines make less code fit on a screen

Use newlines to describe your code’s rhythm.

Syntax Choices

The following two snippets do the same, but the second is separated into more steps, making it more readable.

We create extra variables as an intermediate step. Don’t worry about the performance now, the compiler will do the

right thing.

What about operator precedence? Being explicit helps to remind yourself what you are doing.

Explicit operator precedence

Compound expressions

Package import choices

Type Annotations

Python is dynamically typed, which means if a variable x is an integer:

it is valid in Python to make it into a string or any other type later:

This is not the case in a statically typed language, like C++ or Java. Having this flexibility in Python can be

convenient but it can also lead to unexpected, and potentially difficult to diagnose, mistakes if variables in your

code have different types to what was expected.

For example, consider the following function:

It looks like a function that repeats its inputs a number of times, but what if the inputs are numbers?

Ah, that’s not what we wanted (we were hoping for 232323).

To help us remember how the function is supposed to be used, we can add type annotations (or type “hints”):

The syntax variable_name: type indicates the type each parameter should have (x and y are strings, and times is an

integer), and the arrow syntax in function_name(...) -> type indicates the type of data the function returns (a string

for the repeat function above).

class class_name:
 def method_name(self, a_variable):
 self.m_instance_variable = a_variable

class ClassName:
 def method_name(self, variable_name):
 self.instance_variable = variable_name

big = True
fast = False
color = "brown"
cheap = True

if color == "red" and fast or big and cheap:
 print("Vrroom!")

Vrroom!

exciting = color == "red" and fast
practical = big and cheap

if exciting or practical:
 print("Vrroom!")

Vrroom!

x = 32

x = "bananas"

def repeat(x, y, times=2):
 return (x + y) * times

repeat("dog", "woof")

'dogwoofdogwoof'

repeat(2, 3, times=3)

15

def repeat(x: str, y: str, times: int = 3) -> str:
 return (x + y) * times

https://www.python.org/dev/peps/pep-0008

Note that type annotating your code will not change it’s behaviour (Python does not enforce variables to be their

annotated types):

But they form a kind of documentation to help us understand how the function should be used, and there are tools

that can use them to diagnose issues in your code (see the “Linters” section).

In this case we could do this to get what we expected originally:

See the Python documentation for more details on type annotations and the typing library.

Coding Conventions

You should try to have an agreed policy for your team for these matters.

If your language or project has a standard policy, use that. For example:

Python: PEP8

R: Google’s guide for R, tidyverse style guide

C++: Google’s style guide, Mozilla’s

Julia: Official style guide

7.3 Linting

Estimated time for this notebook: 15 minutes

There are automated tools which enforce coding conventions and check for common mistakes. These are called linters.

Do not blindly believe all these automated tools! Style guides are guides not rules.

Linters Starter Pack

A good starting point for any Python project is to use flake8, black, and isort. All three should improve the style

and consistency of your code whilst requiring minimal setup, and generally they are not opinionated about the way

your code is designed, only the way it is formatted and syntax or convention errors.

flake8

Combines two main tools:

PyFlakes - checks Python code for syntax errors

pycodestyle - checks whether Python code is compliant with PEP8 conventions

flake8 only checks code and flags any syntax/style errors, it does not attempt to fix them.

For example, consider this piece of code:

Running flake8 on it gives the following warnings:

The first warning tells us we have imported a variable called e but not used it, and the last that we’re trying to

use a variable called pi but haven’t defined it anywhere. The 2nd warning indicates that in the PEP8 conventions

there should be two blank lines before a function definition, but we only have 1.

All the examples here run a linter on a single file, but they can be run on all the files in a project at

once as well (e.g. by just running flake8 without a filename).

black

A highly opinionated code formatter, which enforces control of minutiae details of your code. The name comes from a

Henry Ford quote: “Any customer can have a car painted any color that he wants, so long as it is black.”

For example, consider this piece of code:

repeat(2, 3, times=3)

15

int(repeat("2", "3", times=3))

232323

%%writefile flake8_example.py

from constants import e

def circumference(r):
 return 2 * pi * r

Writing flake8_example.py

! flake8 flake8_example.py

flake8_example.py:2:1: F401 'constants.e' imported but unused
flake8_example.py:4:1: E302 expected 2 blank lines, found 1
flake8_example.py:5:16: F821 undefined name 'pi'

Running on multiple files

https://docs.python.org/3/library/typing.html
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/Rguide.xml
https://style.tidyverse.org/
https://google.github.io/styleguide/cppguide.html
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://docs.julialang.org/en/v1/manual/style-guide/index.html
https://flake8.pycqa.org/en/latest/index.html
https://github.com/PyCQA/pyflakes
https://pycodestyle.pycqa.org/en/latest/
https://peps.python.org/pep-0008/#blank-lines
https://black.readthedocs.io/

After running black on the file its contents become:

Changes made by black:

Ensured there are two blank lines before and after function definitions

Wrapped long lines intelligently

Removed excess whitespace (e.g. between the arguments in the print statement on the last line)

Used double quotes " for all strings (rather than a mix of ' and ")

Note that black will automatically fix most of the whitespace-related warnings picked up by flake8 (but it would not

fix the import or undefined name errors in the flake8 example above).

black is not compliant with PEP8 in one way - by default it uses a maximum line length of 88 characters

(PEP8 suggests 79 characters). This is discussed in the black documentation.

isort

“Sorts” imports alphabetically in groups in the following order:

1. standard library imports (e.g. import os).

2. third-party imports (e.g. import pandas).

3. local application/library specific imports (e.g. from .my_python_file import MyClass).

with a blank line between each group.

For example, consider the following code:

If we run isort it becomes:

%%writefile black_example.py

import numpy as np

def
my_complex_function(important_argument_1,important_argument_2,optional_argument_3
= 3,optional_argument_4 = 4):
 return
np.random.random()*important_argument_1*important_argument_2*optional_argument_3*o
ptional_argument_4

def hello(name,greet='Hello',end="!"):
 print(greet, name, end)

Writing black_example.py

! black black_example.py

reformatted black_example.py

All done! ✨ 🍰 ✨
1 file reformatted.

!cat black_example.py

import numpy as np

def my_complex_function(
 important_argument_1,
 important_argument_2,
 optional_argument_3=3,
 optional_argument_4=4,
):
 return (
 np.random.random()
 * important_argument_1
 * important_argument_2
 * optional_argument_3
 * optional_argument_4
)

def hello(name, greet="Hello", end="!"):
 print(greet, name, end)

Line length

%%writefile isort_example.py

import pandas as pd
import os
from matplotlib import pyplot as plt
import black_example
import numpy as np
import json

Writing isort_example.py

! isort isort_example.py

Fixing /home/runner/work/rse-course/rse-
course/module07_construction_and_design/isort_example.py

!cat isort_example.py

import json
import os

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

import black_example

https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#line-length
https://pycqa.github.io/isort/

Note that from imports are placed at the bottom of each group.

Other Linters

mypy

If you use type annotations in your code, mypy can check it for errors that may result from variables being

assigned the wrong type. For example, consider the following code:

If we run mypy on it:

The error tells us we have passed an int as the 2nd argument to hello, but in the function definition the second

argument (greet) is defined to be a str. We probably meant to write hello("Bob", rep=5).

pylint

pylint analyses your code for errors, coding standards, and makes suggestions around where code could be refactored.

It checks for a much wider range of code quality issues than flake8 but is also much more likely to pick up false

positives, i.e. pylint is more likely to give you warnings about things you don’t want to change.

Let’s run it on the same code we used for our flake8 example earlier:

Compared to flake8, in this case pylint also warns us that:

The circumference function doesn’t have a docstring

The constants library we try to import is not available on our system

The variable name r doesn’t follow conventions (single letter variables are discouraged by convention, we could

use radius instead)

nbqa

nbqa allows you to run many Python quality tools (including all the ones we’ve introduced here) on jupyter

notebooks. For example:

pylama

pylama wraps many code quality tools (including isort, mypy, pylint and much of flake8) in a single command.

%%writefile mypy_example.py

def hello(name: str, greet: str = "Hello", rep: int = 1) -> str:
 message: str = ""
 for _ in range(rep):
 message += f"{greet} {name}\n"
 return message

print(hello("Bob", 5))

Writing mypy_example.py

! mypy mypy_example.py

mypy_example.py:9: error: Argument 2 to "hello" has incompatible type "int";
expected "str"
Found 1 error in 1 file (checked 1 source file)

%%writefile pylint_example.py

from constants import e

def circumference(r):
 return 2 * pi * r

Writing pylint_example.py

! pylint pylint_example.py

************* Module pylint_example
pylint_example.py:1:0: C0114: Missing module docstring (missing-module-docstring)
pylint_example.py:2:0: E0401: Unable to import 'constants' (import-error)
pylint_example.py:4:0: C0116: Missing function or method docstring (missing-
function-docstring)
pylint_example.py:4:18: C0103: Argument name "r" doesn't conform to snake_case
naming style (invalid-name)
pylint_example.py:5:15: E0602: Undefined variable 'pi' (undefined-variable)
pylint_example.py:2:0: W0611: Unused e imported from constants (unused-import)

Your code has been rated at 0.00/10

! nbqa flake8 07_02_coding_conventions.ipynb

07_02_coding_conventions.ipynb:cell_3:1:1: F811 redefinition of unused 'ClassName'
from line 2

! pylama --linters isort,mccabe,mypy,pycodestyle,pydocstyle,pyflakes,pylint
flake8_example.py

https://mypy.readthedocs.io/en/stable/
https://www.pylint.org/
https://nbqa.readthedocs.io/en/latest/index.html
https://klen.github.io/pylama/

Setup

Compatibility between linters

If you’re using multiple linters in your project you may need to configure them to be compatible with each other.

For example, flake8 warns about lines longer than 79 characters (the PEP8 convention) but black will allow lines up

to 88 characters by default.

This repository has an example setup for using black, isort, and flake8 together. The .flake8 and pyproject.toml

configuration files set flake8 and isort to run in modes compatible with black.

Ignoring lines of code or linting rules

There will be times where a linter warns you about something in your code but there’s a valid reason it’s

structured that way and you don’t want to change it. Most linters can be configured to ignore specific warnings,

either by the type of warning, by file, or by individual code line. For example, adding a # noqa comment to a line

will make flake8 ignore it.

Each linter does this differently so check their documentation (e.g. flake8, isort, mypy, pylint).

Running Linters

It’s a good idea to run linters regularly, or even better to have them setup to run automatically so you don’t have

to remember. There are various tools to help with that:

IDE Integration

Many editors/IDEs have integrations with common linters or have their own built-in. This can include highlighting

problems inline, or automatically running linters when files are saved, for example. Here is the VS Code

documentation for linting in Python.

There are also tools like editorconfig to help sharing the conventions used within a project, where each

contributor uses different IDEs and tools.

pre-commit

pre-commit is a manager for creating git “hooks” - scripts that run before making a commit. If a hook errors the

commit won’t be made, and you’ll be prompted to fix the problems first. There are pre-commit plugins for all the

linters discussed here, and it’s a good way to ensure all code committed to your repo has had a level of quality

control applied to it.

Continuous Integration

As well as automating unit tests on a CI system like GitHub Actions it’s a good idea to configure them to run

linters on your code too.

Here is an example from a repo using isort, flake8 and black in a GitHub Action. Note that in a CI setup tools that

usually change your code, like black and isort, will be configured to only check whether there are changes that need

to be made.

7.4 Refactoring

Estimated time for this notebook: 20 minutes

Let’s put ourselves in an scenario - that you’ve probably been in before. Imagine you are changing a large piece of

legacy code that’s not well structured, introducing many changes at once, trying to keep in your head all the bits

and pieces that need to be modified to make it all work again. And suddenly, your officemate comes and ask you to

go for coffee… and you’ve lost all track of what you had in your head and need to start again.

Instead of doing so, we could use a more robust approach to go from nasty ugly code to clean code in a safer way.

Refactoring

To refactor is to:

Make a change to the design of some software

Which improves the structure or readability

But which leaves the actual behaviour of the program completely unchanged.

It is a series of small behaviour-preserving steps that have a significant cumulative effect. Using small steps

reduces the risk of error and makes it easier to ensure that the code is working after each change.

List of known refactorings

The next few sections will present some known refactorings.

We’ll show before and after code, present any new coding techniques needed to do the refactoring, and describe code

smells: how you know you need to refactor.

Replace magic numbers with constants

💩Smell: Raw numbers appear in your code

ERROR: /home/runner/work/rse-course/rse-
course/module07_construction_and_design/flake8_example.py Imports are incorrectly
sorted and/or formatted.
flake8_example.py:0:1 Incorrectly sorted imports. [isort]
flake8_example.py:1:1 C0114 Missing module docstring [pylint]
flake8_example.py:1:1 D100 Missing docstring in public module [pydocstyle]
flake8_example.py:2:1 Cannot find implementation or library stub for module named
"constants" [mypy]
flake8_example.py:2:1 See
https://mypy.readthedocs.io/en/stable/running_mypy.html#missing-imports [mypy]
flake8_example.py:2:1 E0401 Unable to import 'constants' [pylint]
flake8_example.py:2:1 W0611 Unused e imported from constants [pylint]
flake8_example.py:4:1 C0116 Missing function or method docstring [pylint]
flake8_example.py:4:19 C0103 Argument name "r" doesn't conform to snake_case
naming style [pylint]
flake8_example.py:4:1 D103 Missing docstring in public function [pydocstyle]
flake8_example.py:4:1 E302 expected 2 blank lines, found 1 [pycodestyle]
flake8_example.py:5:16 E0602 Undefined variable 'pi' [pylint]

https://github.com/alan-turing-institute/Python-quality-tools
https://flake8.pycqa.org/en/3.1.1/user/ignoring-errors.html
https://pycqa.github.io/isort/docs/configuration/options.html
https://mypy.readthedocs.io/en/stable/config_file.html
https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
https://code.visualstudio.com/docs/python/linting
https://editorconfig.org/
https://pre-commit.com/
https://github.com/alan-turing-institute/AIrsenal/blob/main/.github/workflows/main.yml
https://en.wikipedia.org/wiki/Code_smell

before:

after:

Replace repeated code with a function

💩Smell: Fragments of repeated code appear.

Fragment of model where some birds are chasing each other: if the angle of view of one can see the prey, then start

hunting, and if the other see the predator, then start running away.

before:

after:

Change of variable name

💩Smell: Code needs a comment to explain what it is for.

before:

after:

Separate a complex expression into a local variable

💩Smell: An expression becomes long.

before:

after:

Replace loop with iterator

💩Smell: Loop variable is an integer from 1 to something.

before:

after:

even simpler

Replace hand-written code with library code

💩Smell: It feels like surely someone else must have done this at some point.

before:

data = [math.sin(x) for x in np.arange(0, 3.141, 3.141 / 100)]
result = [0] * 100
for i in range(100):
 for j in range(i + 1, 100):
 result[j] += data[i] * data[i - j] / 100

resolution = 100
pi = 3.141
data = [math.sin(x) for x in np.arange(0, pi, pi / resolution)]
result = [0] * resolution
for i in range(resolution):
 for j in range(i + 1, resolution):
 result[j] += data[i] * data[i - j] / resolution

if abs(hawk.facing - starling.facing) < hawk.viewport:
 hawk.hunting()

if abs(starling.facing - hawk.facing) < starling.viewport:
 starling.flee()

def can_see(source, target):
 return (source.facing - target.facing) < source.viewport

if can_see(hawk, starling):
 hawk.hunting()

if can_see(starling, hawk):
 starling.flee()

z = find(x, y)
if z:
 ribe(x)

gene = subsequence(chromosome, start_codon)
if gene:
 transcribe(gene)

if color == "red" and fast or big and economy > 40 or price < 5000:
 print("Vrroom!")

exciting = color == "red" and fast
practical = big and economy > 40
in_budget = price < 5000

if exciting or practical or in_budget:
 print("Vrroom!")

total = 0
for i in range(resolution):
 total += data[i]

total = 0
for value in data:
 total += value

total = sum(data)

after:

See Numpy, Pandas.

Replace set of arrays with array of structures

💩Smell: A function needs to work corresponding indices of several arrays:

before:

after:

Warning: this refactoring greatly improves readability but can make code slower, depending on memory layout. Be

careful.

Replace constants with a configuration file

💩Smell: You need to change your code file to explore different research scenarios.

before:

after:

See YAML and PyYaml, and Python’s os module.

Replace global variables with function arguments

💩Smell: A global variable is assigned and then used inside a called function:

before:

after:

Merge neighbouring loops

💩Smell: Two neighbouring loops have the same for statement

before:

after:

xcoords = [start + i * step for i in range(int((end - start) / step))]

import numpy as np

xcoords = np.arange(start, end, step)

def can_see(i, source_angles, target_angles, source_viewports):
 return abs(source_angles[i] - target_angles[i]) < source_viewports[i]

def can_see(source, target):
 return abs(source["facing"] - target["facing"]) < source["viewport"]

flight_speed = 2.0 # mph
bounds = [0, 0, 100, 100]
turning_circle = 3.0 # m
bird_counts = {"hawk": 5, "starling": 500}

%%writefile config.yaml
bounds: [0, 0, 100, 100]
counts:
 hawk: 5
 starling: 500
speed: 2.0
turning_circle: 3.0

Writing config.yaml

import yaml

config = yaml.safe_load(open("config.yaml"))
print(config)

{'bounds': [0, 0, 100, 100], 'counts': {'hawk': 5, 'starling': 500}, 'speed': 2.0,
'turning_circle': 3.0}

viewport = pi / 4

if hawk.can_see(starling):
 hawk.hunt(starling)

class Hawk:
 def can_see(self, target):
 return (self.facing - target.facing) < viewport

viewport = pi / 4
if hawk.can_see(starling, viewport):
 hawk.hunt(starling)

class Hawk:
 def can_see(self, target, viewport):
 return (self.facing - target.facing) < viewport

for bird in birds:
 bird.build_nest()

for bird in birds:
 bird.lay_eggs()

for bird in birds:
 bird.build_nest()
 bird.lay_eggs()

http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
http://pandas.pydata.org/
http://www.yaml.org/
http://pyyaml.org/
https://docs.python.org/3/library/os.html

Though there may be a case where all the nests need to be built before the birds can start laying eggs.

Break a large function into smaller units

💩Smell: A function or subroutine no longer fits on a page in your editor.

💩Smell: A line of code is indented more than three levels.

💩Smell: A piece of code interacts with the surrounding code through just a few variables.

before:

after:

Separate code concepts into files or modules

💩Smell: You find it hard to locate a piece of code.

💩Smell: You get a lot of version control conflicts.

before:

after:

Refactoring is a safe way to improve code

You may think you can see how to rewrite a whole codebase to be better.

However, you may well get lost halfway through the exercise.

By making the changes as small, reversible, incremental steps, you can reach your target design more reliably.

Tests and Refactoring

Badly structured code cannot be unit tested. There are no “units”.

Before refactoring, ensure you have a robust regression test.

This will allow you to Refactor with confidence.

As you refactor, if you create any new units (functions, modules, classes), add new tests for them.

Refactoring Summary

Replace magic numbers with constants

Replace repeated code with a function

Change of variable/function/class name

Replace loop with iterator

Replace hand-written code with library code

Replace set of arrays with array of structures

Replace constants with a configuration file

Replace global variables with function arguments

Break a large function into smaller units

Separate code concepts into files or modules

And many more…

Read The Refactoring Book.

7.5 Object-Oriented Design

Estimated time for this notebook: 15 minutes

def do_calculation():
 for predator in predators:
 for prey in preys:
 if predator.can_see(prey):
 predator.hunt(prey)
 if predator.can_reach(prey):
 predator.eat(prey)

def do_calculation():
 for predator in predators:
 for prey in preys:
 predate(predator, prey)

def predate(predator, prey):
 if predator.can_see(prey):
 predator.hunt(prey)
 if predator.can_reach(prey):
 predator.eat(prey)

class One:
 pass

class Two:
 def __init__(self):
 self.child = One()

%%writefile anotherfile.py
class One:
 pass

Writing anotherfile.py

from anotherfile import One

class Two:
 def __init__(self):
 self.child = One()

https://martinfowler.com/books/refactoring.html

In this session, we will finally discuss the thing most people think of when they refer to “Software Engineering”:

the deliberate design of software. We will discuss processes and methodologies for planned development of large-

scale software projects: Software Architecture.

The software engineering community has, in large part, focused on an object-oriented approach to the design and

development of large scale software systems. The basic concepts of object orientation are necessary to follow much

of the software engineering conversation.

Design processes

In addition to object-oriented architecture, software engineers have focused on the development of processes for

robust, reliable software development. These codified ways of working hope to enable organisations to repeatably

and reliably complete complex software projects in a way that minimises both development and maintainance costs,

and meets user requirements.

Design and research

Software engineering theory has largely been developed in the context of commercial software companies.

The extent to which the practices and processes developed for commercial software are applicable in a research

context is itself an active area of research.

Recap of Object-Orientation

Classes: User defined types

⚠ Note that in Python, you can add properties to an object once it’s been defined. Just because you can doesn’t

mean you should!

Declaring a class

Class: A user-defined type

Object instances

Instance: A particular object instantiated from a class.

Method

Method: A function which is “built in” to a class

Constructor

Constructor: A special method called when instantiating a new object

Member Variable

Member variable: a value stored inside an instance of a class. Define (and initialise) them in the class

constructor.

Each object has its own set of member variables.

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def grow_up(self):
 self.age += 1

terry = Person("Terry", 76)

terry.home = "Colwyn Bay" # don't add new properties like this!

class MyClass:
 pass

my_object = MyClass()

class MyClass:
 def someMethod(self, argument):
 pass

my_object = MyClass()
my_object.someMethod(value)

class MyClass:
 def __init__(self, argument):
 pass

my_object = MyClass(value)

class MyClass:
 def __init__(self):
 self.member = "Value"

my_object = MyClass()
print(my_object.member)

Value

my_object.member = "Changed"
print(my_object.member)

my_second_object = MyClass()
print(my_second_object.member)

Object refactorings

Replace add-hoc structure with user defined classes

💩Smell: A data structure made of nested arrays and dictionaries becomes unwieldy.

before:

after:

Replace function with a method

💩Smell: A function is always called with the same kind of thing

before:

after:

Replace method arguments with member variables

💩Smell: A variable is nearly always used in arguments to a class.

before:

after:

Replace global variable with class and member variable

💩Smell: A global variable is referenced by a few functions

before:

after:

Changed
Value

from random import random

birds = [
 {"position": random(), "velocity": random(), "type": kind} for kind in bird_types
]

average_position = average([bird["position"] for bird in birds])

from random import random

class Bird:
 def __init__(self, kind):

 self.type = kind
 self.position = random()
 self.velocity = random()

birds = [Bird(kind) for kind in bird_types]
average_position = average([bird.position for bird in birds])

def can_see(source, target):
 return (source.facing - target.facing) < source.viewport

if can_see(hawk, starling):
 hawk.hunt()

class Bird:
 def can_see(self, target):
 return (self.facing - target.facing) < self.viewport

if hawk.can_see(starling):
 hawk.hunt()

class Person:
 def __init__(self, genes):
 self.genes = genes

 def reproduce_probability(self, age):
 pass

 def death_probability(self, age):
 pass

 def emigrate_probability(self, age):
 pass

class Person:
 def __init__(self, genes, age):
 self.age = age
 self.genes = genes

 def reproduce_probability(self):
 pass

 def death_probability(self):
 pass

 def emigrate_probability(self):
 pass

name = "Terry Jones"
birthday = [1, 2, 1942]
today = [22, 11]

if today == birthday[0:2]:
 print(f"Happy Birthday, {name}")
else:
 print("No birthday for you today.")

Object Oriented Refactoring Summary

Replace ad-hoc structure with a class

Replace function with a method

Replace argument to method with member variable

Replace global variable with member variable

7.6 Class design

Estimated time for this notebook: 20 minutes

The concepts we have introduced are common between different object oriented languages. Thus, when we design our

program using these concepts, we can think at an architectural level, independent of language syntax.

In Python:

In C++:

In Fortran:

UML

UML is a conventional diagrammatic notation used to describe “class structures” and other higher level aspects of

software design.

Computer scientists get worked up about formal correctness of UML diagrams and learning the conventions precisely.

Working programmers can still benefit from using UML to describe their designs.

YUML

We can see a YUML model for a Particle class with position and velocity data and a move() method using the YUML online

UML drawing tool (example).

Here’s how we can use Python code to get an image back from YUML:

Particle
position
velocity

move()

CREATED WITH YUML

The representation of the Particle class defined above in UML is done with a box with three sections. The name of

the class goes on the top, then the name of the member variables in the middle, and the name of the methods on the

bottom. We will see later why this is useful.

Information Hiding

class Person:
 def __init__(self, birthday, name):
 self.birth_day = birthday[0]
 self.birth_month = birthday[1]
 self.birth_year = birthday[2]
 self.name = name

 def check_birthday(self, today_day, today_month):
 if not self.birth_day == today_day:
 return False
 if not self.birth_month == today_month:
 return False
 return True

 def greet_appropriately(self, today):
 if self.check_birthday(*today):
 print(f"Happy Birthday, {self.name}")
 else:
 print("No birthday for you.")

john = Person([5, 5, 1943], "Michael Palin")
john.greet_appropriately(today)

class Particle:
 def __init__(self, position, velocity):
 self.position = position
 self.velocity = velocity

 def move(self, delta_t):
 self.position += self.velocity * delta_t

class Particle {
 std::vector<double> position;
 std::vector<double> velocity;
 Particle(std::vector<double> position, std::vector<double> velocity);
 void move(double delta_t);
}

type particle
 real :: position
 real :: velocity
 contains
 procedure :: init
 procedure :: move
end type particle

 http://yuml.me/diagram/boring/class/[Particle|position;velocity|move%28%29]

from IPython.display import SVG

def yuml(model):
 return SVG(url=f"http://yuml.me/diagram/boring/class/{model}")

yuml("[Particle|position;velocity|move()]")

http://yuml.me/
http://yuml.me/diagram/boring/class/%5BParticle%7Cposition;velocity%7Cmove%28%29%5D

Sometimes, our design for a program would be broken if users start messing around with variables we don’t want them

to change.

Robust class design requires consideration of which subroutines are intended for users to use, and which are

internal. Languages provide features to implement this: access control.

In python, we use leading underscores to control whether member variables and methods can be accessed from outside

the class:

foo: a single leading underscore () is a convention to indicate that a variable is private (ie. people are

still able to use it but they shouldn’t)

__foo: a double leading underscore (__) is used to prevent accidental access. Inside the class the variable can

be used with this name, but outside it is replaced by the interpreter with _classname__foo.

__foo__: this pattern is used by built-in functions like __init__ or __str__. You can (and should) write these

for your own classes, but you should only use them for their intended purposes.

Property accessors

Python provides a mechanism to make functions appear to be variables. This can be used if you want to change the

way a class is implemented without changing the interface:

becomes:

Making the same external code work as before.

class MyClass:
 def __init__(self):
 self.__private_data = 0
 self._private_data = 0
 self.public_data = 0

 def __private_method(self):
 pass

 def _private_method(self):
 pass

 def public_method(self):
 pass

 def called_inside(self):
 self.__private_method()
 self._private_method()
 self.__private_data = 1
 self._private_data = 1

MyClass().called_inside()

MyClass()._private_method() # Works, but forbidden by convention

MyClass().public_method() # OK

print(MyClass()._private_data)

0

print(MyClass().public_data)

0

MyClass().__private_method() # Generates error

AttributeError Traceback (most recent call last)
Cell In[8], line 1
----> 1 MyClass().__private_method() # Generates error

AttributeError: 'MyClass' object has no attribute '__private_method'

print(MyClass().__private_data) # Generates error

AttributeError Traceback (most recent call last)
Cell In[9], line 1
----> 1 print(MyClass().__private_data) # Generates error

AttributeError: 'MyClass' object has no attribute '__private_data'

class Person:
 def __init__(self):
 self.name = "John Watson"

Person().name

'John Watson'

class Person:
 def __init__(self):
 self._first = "John"
 self._second = "Watson"

 @property
 def name(self):
 return f"{self._first} {self._second}"

Person().name

'John Watson'

Note that the code behaves the same way to the outside user. The implementation detail is hidden by private

variables. In languages without this feature, such as C++, it is best to always make data private, and always

access data through functions:

But in Python this is unnecessary because the @property capability.

Another way could be to create a member variable name which holds the full name. However, this could lead to

inconsistent data. If we create a get_married function, then the name of the person won’t change!

This type of situation could makes that the object data structure gets inconsistent with itself. Making variables

being out of sync with other variables. Each piece of information should only be stored in once place! In this

case, name should be calculated each time it’s required as previously shown. In database design, this is called

Normalisation.

UML for private/public

We prepend a +/- on public/private member variables and methods:

Particle

+public
-private

+publicmethod()
-privatemethod

CREATED WITH YUML

Class Members

Class, or static members, belong to the class as a whole, and are shared between instances.

This is an object that keeps a count on how many have been created of it.

class Person:
 def __init__(self):
 self._name = "John Watson"

 def name(self): # an access function
 return self._name

Person().name()

'John Watson'

class Person:
 def __init__(self, first, second):
 self._first_ = first
 self._second_ = second
 self.name = f"{self._first_} {self._second_}"

 def get_married(self, to):
 self._second_ = f"{self._second_}-{to._second_}"

john = Person("John", "Watson")
john.name

'John Watson'

sherlock = Person("Sherlock", "Holmes")
john.get_married(sherlock)

john._second_

'Watson-Holmes'

john.name # Not John Watson-Holmes?

'John Watson'

yuml("[Particle|+public;-private|+publicmethod();-privatemethod]")

class Counted:
 number_created = 0 # this is shared between all instances of Counted

 def __init__(self):
 # Increment the class-level variable 'number_created'
 Counted.number_created += 1
 # Add a member variable: each instance of Counted has its own version of
'local_variable'
 self.local_variable = 5

 @classmethod
 def howMany(cls):
 return cls.number_created

Counted.howMany()

0

x = Counted()
Counted.howMany()

1

z = [Counted() for x in range(5)]
Counted.howMany()

https://en.wikipedia.org/wiki/Database_normalization

The data is shared among all the objects instantiated from that class. Note that in __init__ we are not using

self.number_created but the name of the class. The howMany function is not a method of a particular object. It’s

called on the class, not on the object. This is possible by using the @classmethod decorator.

Inheritance and Polymorphism

Object-based vs Object-Oriented

So far we have seen only object-based programming, not object-oriented programming.

Using Objects doesn’t mean your code is object-oriented.

To understand object-oriented programming, we need to introduce polymorphism and inheritance.

Inheritance

Inheritance is a mechanism that allows related classes to share code.

Inheritance allows a program to reflect the ontology of kinds of thing in a program.

Ontology and inheritance

A bird is a kind of animal

An eagle is a kind of bird

A starling is also a kind of bird

All animals can be born and die

Only birds can fly (Ish.)

Only eagles hunt

Only starlings flock

Inheritance in python

Inheritance terminology

Here are two equivalents definition, one coming from C++ and another from Java:

A derived class derives from a base class.

A subclass inherits from a superclass.

These are different terms for the same thing. So, we can say:

Eagle is a subclass of the Animal superclass.

Animal is the base class of the Eagle derived class.

Another equivalent definition is using the synonym child / parent for derived / base class:

A child class extends a parent class.

Inheritance and constructors

To use implicitly constructors from a superclass, we can use super as shown below.

Read Raymond Hettinger’s article about super to see various real examples.

Inheritance UML diagrams

UML shows inheritance with an open triangular arrow pointing from subclass to superclass.

6

x.howMany()

6

class Animal:
 def beBorn(self):
 print("I exist")

 def die(self):
 print("Argh!")

class Bird(Animal):
 def fly(self):
 print("Whee!")

class Eagle(Bird):
 def hunt(self):
 print("I'm gonna eatcha!")

class Starling(Bird):
 def flew(self):
 print("I'm flying away!")

Eagle().beBorn()
Eagle().hunt()

I exist
I'm gonna eatcha!

class Animal:
 def __init__(self, age):
 self.age = age

class Person(Animal):
 def __init__(self, age, name):
 super().__init__(age)
 self.name = name

yuml("[Animal]^-[Bird],[Bird]^-[Eagle],[Bird]^-[Starling]")

https://en.wikipedia.org/wiki/Ontology_(information_science)
https://twitter.com/raymondh
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

Animal Bird

Eagle

Starling

CREATED WITH YUML

Aggregation vs Inheritance

If one object has or owns one or more objects, this is not inheritance.

For example, the boids example we saw few weeks ago, could be organised as an overall Model, which it owns several

Boids, and each Boid owns two 2-vectors, one for position and one for velocity.

Aggregation in UML

The Boids situation can be represented thus:

Model Boid
*

Vectorposition

velocity

CREATED WITH YUML

The open diamond indicates Aggregation, the closed diamond composition. (A given boid might belong to multiple

models, a given position vector is forever part of the corresponding Boid.)

The asterisk represents cardinality, a model may contain multiple Boids. This is a one to many relationship. Many

to many relationship is shown with * on both sides.

Refactoring to inheritance

💩Smell: Repeated code between two classes which are both ontologically subtypes of something

before:

after:

Polymorphism

Polymorphism refers to having different classes with the same method that does different things.

yuml("[Model]<>-*>[Boid],[Boid]position++->[Vector],[Boid]velocity++->[Vector]")

class Person:
 def __init__(self, age, job):
 self.age = age
 self.job = job

 def birthday(self):
 self.age += 1

class Pet:
 def __init__(self, age, owner):
 self.age = age
 self.owner = owner

 def birthday(self):
 self.age += 1

class Animal:
 def __init__(self, age):
 self.age = age

 def birthday(self):
 self.age += 1

class Person(Animal):
 def __init__(self, age, job):
 self.job = job
 super().__init__(age)

class Pet(Animal):
 def __init__(self, age, owner):
 self.owner = owner
 super().__init__(age)

class Dog:
 def noise(self):
 return "Bark"

class Cat:
 def noise(self):
 return "Miaow"

class Pig:
 def noise(self):
 return "Oink"

class Cow:
 def noise(self):
 return "Moo"

animals = [Dog(), Dog(), Cat(), Pig(), Cow(), Cat()]
for animal in animals:
 print(animal.noise())

Bark
Bark
Miaow
Oink
Moo
Miaow

https://en.wikipedia.org/wiki/One-to-many_(data_model)
https://en.wikipedia.org/wiki/Many-to-many_(data_model)

This will print “Bark Bark Miaow Oink Moo Miaow”

If two classes support the same method, but it does different things for the two classes, calling the method will

invoke the version for whatever class the object is an instance of.

Polymorphism and Inheritance

Often, polymorphism uses multiple derived classes with a common base class. However, duck typing in Python means

that all that is required is that the types support a common Concept (Such as iterable, or container, or, in this

case, the Noisy concept.)

A common base class is used where there is a likely default that you want several of the derived classes to have.

Undefined Functions and Polymorphism

In the above example, we put in a dummy noise for Animals that don’t know what type they are.

Instead, we can explicitly deliberately leave this undefined, and we get a crash if we access an undefined method.

Refactoring to Polymorphism

💩Smell: a function uses a big set of if statements or a case statement to decide what to do:

before:

which is better replaced by the code above.

Interfaces and concepts

In C++, it is common to define classes which declare dummy methods, called “virtual” methods, which specify the

methods which derived classes must implement. Classes which define these methods, but which cannot be instantiated

into actual objects, are called “abstract base” classes or “interfaces”.

Python’s Duck Typing approach means explicitly declaring these is unnesssary: any class concept which implements

appropriately named methods will do. These as user-defined concepts, just as “iterable” or “container” are built-in

Python concepts. A class is said to “implement an interface” or “satisfy a concept”.

Interfaces in UML

Interfaces implementation (a common ancestor that doesn’t do anything but defines methods to share) in UML is

indicated thus:

<<Animal>> Dog

CREATED WITH YUML

Further UML

class Animal:
 def noise(self):
 return "I don't make a noise."

class Dog(Animal):
 def noise(self):
 return "Bark"

class Worm(Animal):
 pass

class Poodle(Dog):
 pass

animals = [Dog(), Worm(), Pig(), Cow(), Poodle()]
for animal in animals:
 print(animal.noise())

Bark
I don't make a noise.
Oink
Moo
Bark

class Animal:
 pass

class Worm(Animal):
 pass

Worm().noise() # Generates error

AttributeError Traceback (most recent call last)
Cell In[31], line 1
----> 1 Worm().noise() # Generates error

AttributeError: 'Worm' object has no attribute 'noise'

class Animal:
 def __init__(self, animal_kind):
 self.animal_kind = animal_kind

 def noise(self):
 if self.animal_kind == "Dog":
 return "Bark"
 if self.animal_kind == "Cat":
 return "Miaow"
 if self.animal_kind == "Cow":
 return "Moo"
 return "Growl"

yuml("[<<Animal>>]^-.-[Dog]")

https://en.wikipedia.org/wiki/Duck_typing

UML is a much larger diagram language than the aspects we’ve shown here.

Message sequence charts show signals passing back and forth between objects (Web Sequence Diagrams).

Entity Relationship Diagrams can be used to show more general relationships between things in a system.

Read more about UML on Martin Fowler’s book about the topic.

7.7 Design Patterns

⚠ Warning: Advanced topic! ⚠

Estimated time for this notebook: 20 minutes

Class Complexity

We’ve seen that using object orientation can produce quite complex class structures, with classes owning each

other, instantiating each other, and inheriting from each other.

There are lots of different ways to design things, and decisions to make.

Should I inherit from this class, or own it as a member variable? (“is a” vs “has a”)

How much flexibility should I allow in this class’s inner workings?

Should I split this related functionality into multiple classes or keep it in one?

Design Patterns

Programmers have noticed that there are certain ways of arranging classes that work better than others. These are

called design patterns.

They were first collected on one of the world’s first Wikis, as the Portland Pattern Repository.

For a good, modern reference site try: https://sourcemaking.com/design_patterns

Reading a pattern

A description of a pattern in a book such as the Gang Of Four book usually includes:

Intent - what’s the purpose

Motivation - why you want to use it

Applicability - when do you want to use it

Structure - what does it look like (e.g., UML diagram)

Participants - What are the different classes in it

Collaborations - how they work together

Consequences - What are the results and trade-offs

Implementation - How is it implemented

Sample Code - In practice.

Introducing Some Patterns

There are lots and lots of design patterns, and it’s a great literature to get into to read about design questions

in programming and learn from other people’s experience.

We’ll just show a few in this session:

Factory Method

Builder

Strategy

Model-View-Controller

Supporting code

Factory Pattern

Here’s what the Gang of Four Book says about Factory Method:

Intent: Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory

Method lets a class defer instantiation to subclasses.

Applicability: Use the Factory method pattern when:

A class can’t anticipate the class of objects it must create

A class wants its subclasses to specify the objects it creates

This is pretty hard to understand, so let’s look at an example.

Factory UML

%matplotlib inline
from unittest.mock import Mock

from IPython.display import HTML, SVG

def yuml(model):
 return SVG(url=f"http://yuml.me/diagram/boring/class/{model}")

yuml(
 "[Product]^-[ConcreteProduct],"
 + "[Creator|(v)FactoryMethod()]^-[ConcreteCreator|FactoryMethod()],"
 + "[ConcreteCreator]-.->[ConcreteProduct]"
)

https://www.websequencediagrams.com/
https://martinfowler.com/books/uml.html
http://c2.com/cgi/wiki?WelcomeVisitors
http://c2.com/cgi-bin/wiki?PatternIndex
https://sourcemaking.com/design_patterns
https://www.worldcat.org/title/design-patterns-elements-of-reusable-object-oriented-software/oclc/31171684

Product

ConcreteProduct

Creator

(v)FactoryMethod()

ConcreteCreator

FactoryMethod()

CREATED WITH YUML

Factory Example

An “agent based model” is one like the Boids model from last week: agents act and interact under certain rules.

Complex phenomena can be described by simple agent behaviours.

Agent model constructor

This logic is common to many kinds of Agent based model (ABM), so we can imagine a common class for agent based

models: the constructor could parse a configuration specifying how many agents of each type to create, their

initial conditions and so on.

However, this common constructor doesn’t know what kind of agent to create; as a common base, it could be a model

of boids, or the agents could be remote agents on foreign servers, or they could even be physical hardware robots

connected to the driving model over Wifi!

We need to defer the construction of the agents. We can do this with polymorphism: each derived class of the ABM

can have an appropriate method to create its agents:

This is the factory method pattern: a common design solution to the need to defer the construction of daughter

objects to a derived class. self.create is not defined here, but in each of the agents that inherits from AgentModel.

Using polymorphism to get deferred behaviour on what you want to create.

Agent derived classes

The type that is created is different in the different derived classes:

Agents are the base product, boids or robots are a ConcreteProduct.

There is no need to define an explicit base interface for the “Agent” concept in Python: anything that responds to

“simulate” and “interact” methods will do: this is our Agent concept.

Refactoring to Patterns

It’s easy to get into a tangle trying to make base classes which somehow “promote” themselves into a derived class

based on some code in the base class.

This is an example of an “Antipattern”: like a Smell, this is a recognised Wrong Way of doing things.

What we should write instead is a Creator with a FactoryMethod.

Consider the following code:

class AgentModel:
 def simulate(self):
 for agent in self.agents:
 for target in self.agents:
 agent.interact(target)
 agent.simulate()

class AgentModel:
 def __init__(self, config):
 self.agents = []
 for agent_config in config:
 self.agents.append(self.create(**agent_config))

 def simulate(self):
 for agent in self.agents:
 for target in self.agents:
 agent.interact(target)
 agent.simulate()

class BirdModel(AgentModel):
 def create(self, agent_config):
 return Boid(agent_config)

class WebAgentFactory(AgentModel):
 def __init__(self, url, config):
 self.url = url
 self.connection = AmazonCompute.connect(url)
 super().__init__(config) # run the AgentModel constructor

 def create(self, agent_config):
 return OnlineAgent(agent_config, self.connection)

The agent creation loop is almost identical in the two classes; so we can be sure we need to refactor it away; but

the type that is created is different in the two cases, so this is the smell that we need a factory pattern.

Builder

Intent: Separate the steps for constructing a complex object from its final representation.

Director

Construct()

Builder

(a)BuildPart()

ConcreteBuilder

BuildPart()
GetResult()

Product

CREATED WITH YUML

Builder example

Let’s continue our Agent Based modelling example.

There’s a lot more to defining a model than just adding agents of different kinds: we need to define boundary

conditions, specify wind speed or light conditions.

We could define all of this for an imagined advanced Model with a very very long constructor, with lots of optional

arguments:

Builder preferred to complex constructor

However, long constructors easily become very complicated. Instead, it can be cleaner to define a Builder for

models. A builder is like a deferred factory: each step of the construction process is implemented as an individual

method call, and the completed object is returned when the model is ready.

Inheritance of an Abstract Builder for multiple concrete builders could be used where there might be multiple ways

to build models with the same set of calls to the builder: for example a version of the model builder yielding

models which can be executed in parallel on a remote cluster.

Using a builder

class AgentModel:
 def __init__(self):
 self.agents = []

 def simulate(self):
 for agent in self.agents:
 for target in self.agents:
 agent.interact(target)
 agent.simulate()

class BirdModel(AgentModel):
 def __init__(self, config):
 super().__init__() # run the constructor of the AgentModel class
 for boid_config in config:
 self.agents.append(Boid(**boid_config))

class WebAgentFactory(AgentModel):
 def __init__(self, url, config):
 self.url = url
 connection = AmazonCompute.connect(url)
 super().__init__() # run the constructor of the AgentModel class
 for agent_config in config:
 self.agents.append(OnlineAgent(agent_config, connection))

yuml(
 "[Director|Construct()]<>->[Builder|(a)BuildPart()],"
 + "[Builder]^-[ConcreteBuilder|BuildPart();GetResult()],"
 + "[ConcreteBuilder]-.->[Product]"
)

class AdvancedModel:
 def __init__(
 self,
 xsize,
 ysize,
 agent_count,
 wind_speed,
 agent_sight_range,
 eagle_start_location,
):
 pass

AdvancedModel = Mock() # Create a temporary mock so the example works!

class ModelBuilder:
 def start_model(self):
 self.model = AdvancedModel()
 self.model.xlim = None
 self.model.ylim = None

 def set_bounds(self, xlim, ylim):
 self.model.xlim = xlim
 self.model.ylim = ylim

 def add_agent(self, xpos, ypos):
 pass # Implementation here

 def finish(self):
 self.validate()
 return self.model

 def validate(self):
 assert self.model.xlim is not None
 # Check that the all the
 # parameters that need to be set
 # have indeed been set.

Avoid staged construction without a builder.

We could, of course, just add all the building methods to the model itself, rather than having the model be yielded

from a separate builder.

This is an antipattern that is often seen: a class whose __init__ constructor alone is insufficient for it to be

ready to use. A series of methods must be called, in the right order, in order for it to be ready to use.

This results in very fragile code: its hard to keep track of whether an object instance is “ready” or not. Use the

builder pattern to keep deferred construction in control.

We might ask why we couldn’t just use a validator in all of the methods that must follow the deferred constructors;

to check they have been called. But we’d need to put these in every method of the class, whereas with a builder, we

can validate only in the finish method.

Strategy Pattern

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm

vary independently from clients that use it.

Strategy pattern example: sunspots

Consider the sequence of sunspot observations:

Sunspot cycle has periodicity

builder = ModelBuilder()
builder.start_model()

builder.set_bounds(500, 500)
builder.add_agent(40, 40)
builder.add_agent(400, 100)

model = builder.finish()
model.simulate()

<Mock name='mock().simulate()' id='140655249547904'>

import csv
from io import StringIO

import requests

def load_sunspots():
 url_base = "https://www.quandl.com/api/v1/datasets/SIDC/SUNSPOTS_A.csv"
 x = requests.get(
 url_base,
 params={
 "trim_start": "1700-12-31",
 "trim_end": "2018-01-01",
 "sort_order": "asc",
 },
 timeout=60,
)
 # Convert requests result to look like a file buffer before reading with CSV
 data = csv.reader(StringIO(x.text))
 next(data) # Skip header row
 return [float(row[1]) for row in data]

import matplotlib.pyplot as plt

spots = load_sunspots()
plt.plot(spots)

[<matplotlib.lines.Line2D at 0x7fecda30f970>]

import numpy as np

spectrum = np.fft.rfft(spots)

plt.figure()
plt.plot(abs(spectrum))
plt.savefig("fixed.png")

Years are not constant length

There’s a potential problem with this analysis however:

Years are not constant length

Leap years exist

But, the Fast Fourier Transform assumes evenly spaced intervals

Strategy Pattern for Algorithms

Uneven time series

The Fast Fourier Transform cannot be applied to uneven time series.

We could:

Ignore this problem, and assume the effect is small;

Interpolate and resample to even times;

Use a method which is robust to unevenly sampled series, such as LSSA;

We also want to find the period of the strongest periodic signal in the data, there are various different methods

we could use for this also, such as integrating the fourier series by quadrature to find the mean frequency, or

choosing the largest single value.

Too many classes!

We could implement a base class for our common code between the different approaches, and define derived classes

for each different algorithmic approach. However, this has drawbacks:

The constructors for each derived class will need arguments for all the numerical method’s control parameters,

such as the degree of spline for the interpolation method, the order of quadrature for integrators, and so on.

Where we have multiple algorithmic choices to make (interpolator, periodogram, peak finder…) the number of

derived classes would explode: class SunspotAnalyzerSplineFFTTrapeziumNearMode is a bit unwieldy.

The algorithmic choices are not then available for other projects

This design doesn’t fit with a clean Ontology of “kinds of things”: there’s no Abstract Base for spectrogram

generators…

Apply the strategy pattern:

We implement each algorithm for generating a spectrum as its own Strategy class.

They all implement a common interface

Arguments to strategy constructor specify parameters of algorithms, such as spline degree

One strategy instance for each algorithm is passed to the constructor for the overall analysis

First, we’ll define a helper class for our time series.

Then, our class which contains the analysis code, except the numerical methods

class Series:
 """Enhance NumPy N-d array with some helper functions for clarity"""

 def __init__(self, data):
 self.data = np.array(data)
 self.count = self.data.shape[0]
 self.start = self.data[0, 0]
 self.end = self.data[-1, 0]
 self.range = self.end - self.start
 self.step = self.range / self.count
 self.times = self.data[:, 0]
 self.values = self.data[:, 1]
 self.plot_data = [self.times, self.values]
 self.inverse_plot_data = [1.0 / self.times[20:], self.values[20:]]

https://en.wikipedia.org/wiki/Least-squares_spectral_analysis

Our existing simple fourier strategy

A strategy based on interpolation to a spline

A strategy using the Lomb-Scargle Periodogram

Define our concrete solutions with particular strategies

Use these new tools to compare solutions

from datetime import datetime

class AnalyseSunspotData:
 def format_date(self, date):
 date_format = r"%Y-%m-%d"
 return datetime.strptime(date, date_format)

 def load_data(self, csv_file):
 start_date_str = "1700-12-31"
 end_date_str = "2014-01-01"
 self.start_date = self.format_date(start_date_str)
 url_base = f"https://www.quandl.com/api/v1/datasets/{csv_file}"
 x = requests.get(
 url_base,
 params={
 "trim_start": start_date_str,
 "trim_end": end_date_str,
 "sort_order": "asc",
 },
 timeout=60,
)
 secs_per_year = (datetime(2014, 1, 1) - datetime(2013, 1,
1)).total_seconds()
 data = csv.reader(StringIO(x.text))
 # Convert requests result to look like a file buffer before reading with
CSV
 next(data) # Skip header row
 self.series = Series(
 [
 [
 (self.format_date(row[0]) - self.start_date).total_seconds()
 / secs_per_year,
 float(row[1]),
]
 for row in data
]
)

 def __init__(self, frequency_strategy):
 self.load_data("SIDC/SUNSPOTS_A.csv")
 self.frequency_strategy = frequency_strategy

 def frequency_data(self):
 return self.frequency_strategy.transform(self.series)

class FourierNearestFrequencyStrategy:
 def transform(self, series):
 transformed = np.fft.fft(series.values)[0 : series.count // 2]
 frequencies = np.fft.fftfreq(series.count, series.step)[0 : series.count
// 2]
 return Series(list(zip(frequencies, abs(transformed) / series.count)))

from scipy.interpolate import UnivariateSpline

class FourierSplineFrequencyStrategy:
 def next_power_of_two(self, value):
 "Return the next power of 2 above value"
 return 2 ** (1 + int(np.log(value) / np.log(2)))

 def transform(self, series):
 spline = UnivariateSpline(series.times, series.values)
 # Linspace will give us *evenly* spaced points in the series
 fft_count = self.next_power_of_two(series.count)
 points = np.linspace(series.start, series.end, fft_count)
 regular_xs = [spline(point) for point in points]
 transformed = np.fft.fft(regular_xs)[0 : fft_count // 2]
 frequencies = np.fft.fftfreq(fft_count, series.range / fft_count)[
 0 : fft_count // 2
]
 return Series(list(zip(frequencies, abs(transformed) / fft_count)))

import math
from copy import deepcopy

from scipy.signal import lombscargle

class LombFrequencyStrategy:
 def transform(self, series):
 frequencies = np.array(
 np.linspace(1.0 / series.range, 0.5 / series.step, series.count)
)
 result = lombscargle(
 deepcopy(series.times), deepcopy(series.values), 2.0 * math.pi *
frequencies
)
 return Series(list(zip(frequencies, np.sqrt(result / series.count))))

fourier_model = AnalyseSunspotData(FourierSplineFrequencyStrategy())
lomb_model = AnalyseSunspotData(LombFrequencyStrategy())
nearest_model = AnalyseSunspotData(FourierNearestFrequencyStrategy())

Results: Deviation of year length from average

Model-View-Controller

Separate graphics from science!

Whenever we are coding a simulation or model we want to:

Implement the maths of the model

Visualise, plot, or print out what is going on.

We often see scientific programs where the code which is used to display what is happening is mixed up with the

mathematics of the analysis. This is hard to understand.

We can do better by separating the Model from the View, and using a “Controller” to manage them.

Model

This is where we describe our internal logic, rules, etc.

from scipy import signal

rng = np.random.default_rng()

nin = 1000
nout = 100000
frac_points = 0.9
A = 2.0
w = 1.0
phi = 0.5 * np.pi

r = rng.standard_normal(nin)
x = np.linspace(0.01, 10 * np.pi, nin)
x = x[r >= frac_points]
y = A * np.sin(w * x + phi)
f = np.linspace(0.01, 10, nout)

pgram = signal.lombscargle(x, y, f, normalize=True)

comparison = fourier_model.frequency_data().inverse_plot_data + ["C0"]
comparison += lomb_model.frequency_data().inverse_plot_data + ["C1"]
comparison += nearest_model.frequency_data().inverse_plot_data + ["C2"]

deviation = 365 * (
 fourier_model.series.times
 - np.linspace(
 fourier_model.series.start, fourier_model.series.end,
fourier_model.series.count
)
)

plt.plot(*comparison)
plt.xlim(0, 16)

(0.0, 16.0)

plt.plot(deviation)

[<matplotlib.lines.Line2D at 0x7fecc3146b20>]

View

This is where we describe what the user sees of our Model, what’s displayed. You may have different type of

visualisation (e.g., on one type of projection, a 3D view, a surface view, …) which can be implemented in different

view classes.

Controller

This is the class that tells the view that the models has changed and updates the model with any change the user

has input through the view.

 Once Loop Reflect

Other resources

class Model:
 def __init__(self):
 self.positions = np.random.rand(100, 2)
 self.speeds = np.random.rand(100, 2) + np.array([-0.5, -0.5])[np.newaxis,
:]
 self.deltat = 0.01

 def simulation_step(self):
 self.positions += self.speeds * self.deltat

 def agent_locations(self):
 return self.positions

class View:
 def __init__(self, model):
 self.figure = plt.figure()
 axes = plt.axes()
 self.model = model
 self.scatter = axes.scatter(
 model.agent_locations()[:, 0], model.agent_locations()[:, 1]
)

 def update(self):
 self.scatter.set_offsets(self.model.agent_locations())

from matplotlib import animation

class Controller:
 def __init__(self):
 self.model = Model() # Or use Builder
 self.view = View(self.model)

 def animate(self, frame_number):
 self.model.simulation_step()
 self.view.update()

 def go(self):
 anim = animation.FuncAnimation(
 self.view.figure, self.animate, frames=200, interval=50
)
 return anim.to_jshtml()

contl = Controller()

HTML(contl.go())

Design Patterns by Refactoring Guru

Course on design patterns and Advanced design patterns with Python.

A collection of design patterns and idioms in Python.

Head First Design Patterns - based on Java (with online course at Lynda.com).

Design Pattern for Dummies.

7.8 Exercise: Refactoring The Bad Boids

We have written some very bad code implementing our Boids flocking example. We first looked at the Boids in Module

3 (but you don’t need to have seen the previous example to do this exercise). The task is to refactor and improve

this initial implementation.

7.8.1 Get the bad boids code

Here’s the Github link: https://github.com/alan-turing-institute/bad-boids

Please fork it on GitHub, and clone your fork:

7.8.2 Familiarise yourself with the code

Have a look at the boids.py file in the bad-boids directory and quickly review how it’s implemented.

Then run the code:

You should be able to see some birds flying around, and then disappearing as they leave the window, like this:

7.8.3 Regression Test

First, have a look at the regression test we made in the record_fixture.py file. This saves the before and after

state for one iteration of some boids, to the file fixture.yml.

Then, we used this saved state to define a regression test in test_boids.py.

Check the tests pass by running pytest from the bad-boids directory:

7.8.4 Start refactoring

Transform bad boids gradually into better code, while making sure it still works, using a refactoring approach.

Each time you make a change:

Ensure the regression test still passes (you may need to update it to reflect any changed functions/classes in

your code, but you shouldn’t change the fixture.yml file - the new implementation must reproduce the same

results)

Do a git commit on your fork, and write a commit message explaining the refactoring you did.

Try to keep the changes as small as possible.

If your refactoring creates any units (functions, modules, or classes), write a unit test for the unit (it’s a good

idea to not rely only on regression testing).

Don’t worry about the performance of the code for this exercise. That’s a topic for the “Programming for Speed”

module later.

Refactoring Ideas

You probably won’t have time to do all these in the session, but here are some refactorings we’ve seen in the

module that you can try to apply here. We’ve loosely ordered them by where we’d suggest starting, but feel free to

focus on the ones you’re most interested in:

Use linters to check and enforce a consistent style

Ensure the code follows PEP8 conventions (e.g. for naming and whitespace)

Consider whether any of the code “smells” and refactorings from 07_04_refactoring apply here

Consider whether there is structure in the code that could be refactored into classes (see

07_05_object_oriented_design for ideas)

Add type annotations

7.8.5 Extensions

You may also like to apply some of what we’ve learned in previous modules, for example:

Ensure dependencies are specified correctly

Run tests and checks automatically, for example with a GitHub actions workflow

Improve documentation

Make the code into a Python package (e.g. see module06_software_projects/06_04_packaging)

8. Advanced Programming Techniques
Functional programming

Metaprogramming

Duck typing and exceptions

Operator overloading

Iterators and Generators

git clone git@github.com:yourname/bad-boids.git
OR git clone https://github.com/yourname/bad-boids.git

cd bad_boids
python boids.py

pytest

https://refactoring.guru/design-patterns
https://www.lynda.com/Python-tutorials/Design-Patterns-Python/369187-2.html
https://www.lynda.com/Python-tutorials/Python-Advanced-Design-Patterns/656802-2.html
https://github.com/faif/python-patterns
http://www.worldcat.org/title/head-first-design-patterns/oclc/893944765
https://www.lynda.com/Developer-Programming-Foundations-tutorials/Foundations-Programming-Design-Patterns/135365-2.html
http://www.worldcat.org/title/design-patterns-for-dummies/oclc/69537420&referer=brief_results
https://github.com/alan-turing-institute/bad-boids
https://docs.github.com/en/get-started/quickstart/fork-a-repo
file:///home/runner/work/rse-course/rse-course/_build/module06_software_projects/06_04_packaging.html#using-setuptools

Contents

8.0 Advanced Python Programming (5 minutes)

8.1 Functional programming (20 minutes)

8.2 Iterators and Generators (25 minutes)

8.3 Exceptions (15 minutes)

8.4 Operator overloading (20 minutes)

8.5 Metaprogramming (20 minutes)

8.6 Advanced operator overloading (20 minutes)

Total time: 2 hrs 5 minutes

Exercises

This module does not currently have any associated exercises.

8.0 Advanced Python Programming
Estimated time for this notebook: 5 minutes

… or, how to avoid repeating yourself.

Avoid Boiler-Plate

Code can often be annoyingly full of “boiler-plate” code: characters you don’t really want to have to type.

Not only is this tedious, it’s also time-consuming and dangerous: unnecessary code is an unnecessary potential

place for mistakes.

There are two important phrases in software design that we’ve spoken of before in this context:

Once And Only Once

Don’t Repeat Yourself (DRY)

All concepts, ideas, or instructions should be in the program in just one place. Every line in the program should

say something useful and important.

We refer to code that respects this principle as DRY code.

In this chapter, we’ll look at some techniques that can enable us to refactor away repetitive code.

Since in many of these places, the techniques will involve working with functions as if they were variables, we’ll

learn some functional programming. We’ll also learn more about the innards of how Python implements classes.

We’ll also think about how to write programs that generate the more verbose, repetitive program we could otherwise

write. We call this metaprogramming.

8.1 Functional programming
Estimated time for this notebook: 20 minutes

We have previously seen the object-oriented style of programming, and how to organise our code according to it

using objects, classes and inheritance. While widely-adopted and very useful, this is not the only way of writing

code. The functional paradigm, as the name suggests, emphasises functions as building blocks of programs.

Understanding to think in a functional programming style is almost as important as object orientation for building

DRY, clear scientific software, and is just as conceptually difficult. However, being aware of different paradigms

and styles gives you access to more techniques that you can use to write, structure and reason about your code.

Functions within functions

Programs are composed of functions: they take data in (which we call parameters or arguments) and send data out

(through return statements).

A conceptual trick which is often used by computer scientists to teach the core idea of functional programming is

this: to write a program, in theory, you only ever need functions with one argument, even when you think you need

two or more. Why?

Let’s define a program to add two numbers:

How could we do this, in a fictional version of Python which only defined functions of one argument? In order to

understand this, we’ll have to understand several of the concepts of functional programming. Let’s start with a

program which just adds five to something:

OK, we could define lots of these, one for each number we want to add. But that would be infinitely repetitive. So,

let’s try to metaprogram that: we want a function which returns these add_N() functions.

Let’s start with the easy case: a function which returns a function which adds 5 to something:

def add(a, b):
 return a + b

add(5, 6)

11

def add_five(a):
 return a + 5

add_five(6)

11

https://en.wikipedia.org/wiki/Functional_programming

OK, so what happened there? Well, we defined a function inside the other function. We can always do that:

When we do this, the functions enclosed inside the outer function are local functions, and can’t be seen outside:

There’s not really much of a difference between functions and other variables in python. A function is just a

variable which can have () put after it to call the code!

And we know that one of the things we can do with a variable is return it. So we can return a function, and then

call it outside:

So now, to finish this, we just need to return a function to add an arbitrary amount:

We can make this even prettier: let’s make another variable pointing to our generate_adder() function:

And now we can do the real magic:

def generate_five_adder():
 def _five_adder(a):
 return a + 5

 return _five_adder

coolfunction = generate_five_adder()
coolfunction(7)

12

def thirty_function():
 def times_three(a):
 return a * 3

 def add_seven(a):
 return a + 7

 return times_three(add_seven(3))

thirty_function()

30

add_seven

NameError Traceback (most recent call last)
Cell In[5], line 1
----> 1 add_seven

NameError: name 'add_seven' is not defined

print(thirty_function)

<function thirty_function at 0x7fc1547ef310>

x = [thirty_function, add_five, add]

for fun in x:
 print(fun)

<function thirty_function at 0x7fc1547ef310>
<function add_five at 0x7fc15489bf70>
<function add at 0x7fc15489bca0>

def deferred_greeting():
 def greet():
 print("Hello")

 return greet

friendlyfunction = deferred_greeting()

Do something else
print("Just passing the time...")

Just passing the time...

OK, Go!
friendlyfunction()

Hello

def generate_adder(increment):
 def _adder(a):
 return a + increment

 return _adder

add_3 = generate_adder(3)

add_3(9)

12

add = generate_adder

add(8)(5)

In summary, we have started with a function that takes two arguments (add(a, b)) and replaced it with a new function

(add(a)(b)). This new function takes a single argument, and returns a function that itself takes the second

argument.

This may seem like an overly complicated process - and, in some cases, it is! However, this pattern of functions

that return functions (or even take them as arguments!) can be very useful. In fact, it is the basis of decorators,

a Python feature that we will discuss more in this chapter [notebook].

Closures

You may have noticed something a bit weird:

In the definition of generate_adder, increment is a local variable. It should have gone out of scope and died at the

end of the definition. How can the amount the returned adder function is adding still be kept?

This is called a closure. In Python, whenever a function definition references a variable in the surrounding scope,

it is preserved within the function definition.

You can close over global module variables as well:

And note that the closure stores a reference to the variable in the surrounding scope: (“Late Binding”)

Map and Reduce

We often want to apply a function to each variable in an array, to return a new array. We can do this with a list

comprehension:

But this is sufficiently common that there’s a quick built-in:

This map operation is really important conceptually when understanding efficient parallel programming: different

computers can apply the mapped function to their input at the same time. We call this Single Program, Multiple Data

(SPMD). map is half of the map-reduce functional programming paradigm which is key to the efficient operation of

much of today’s “data science” explosion.

Let’s continue our functional programming mind-stretch by looking at reduce operations.

We very often want to loop with some kind of accumulator (an intermediate result that we update), such as when

finding a sum:

or finding a maximum:

13

name = "Eric"

def greet():
 print("Hello, ", name)

greet()

Hello, Eric

name = "John"

greet()

Hello, John

numbers = range(10)

[add_five(i) for i in numbers]

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

list(map(add_five, numbers))

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

def summer(data):
 total = 0.0

 for x in data:
 total += x

 return total

summer(range(10))

45.0

import sys

def my_max(data):
 # Start with the smallest possible number
 highest = -sys.float_info.max

 for x in data:
 if x > highest:
 highest = x

 return highest

my_max([2, 5, 10, -11, -5])

file:///home/runner/work/rse-course/rse-course/_build/html/08_02_iterators_and_generators.html#Decorators
file:///home/runner/work/rse-course/rse-course/_build/html/08_02_iterators_and_generators.ipynb#Decorators
https://en.wikipedia.org/wiki/MapReduce

These operations, where we have some variable which is building up a result, and the result is updated with some

operation, can be gathered together as a functional program, taking in (as an argument) the operation to be used to

combine results:

Anyway, this accumulate-under-an-operation process is so fundamental to computing that it’s usually in standard

libraries for languages which allow functional programming:

Efficient map-reduce

Now, because these operations, bigger and _add, are such that e.g. (a+b)+c = a+(b+c) , i.e. they are associative, we

could apply our accumulation to the left half and the right half of the array, each on a different computer, and

then combine the two halves:

1 + 2 + 3 + 4 = (1 + 2) + (3 + 4)

Indeed, with a bigger array, we can divide-and-conquer more times:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

So with enough parallel computers, we could do this operation on eight numbers in three steps: first, we use four

computers to do one each of the pairwise adds.

Then, we use two computers to add the four totals.

Then, we use one of the computers to do the final add of the two last numbers.

You might be able to do the maths to see that with an N element list, the number of such steps is proportional to

the logarithm of N.

We say that with enough computers, reduction operations are O(ln N)

This course isn’t an introduction to algorithms, but we’ll talk more about this O() notation when we think about

programming for performance.

Lambda Functions

When doing functional programming, we often want to be able to define a function on the fly:

10

-sys.float_info.max

-1.7976931348623157e+308

def accumulate(operation, data, initial):
 accumulator = initial
 for x in data:
 accumulator = operation(accumulator, x)
 return accumulator

def my_sum(data):
 def _add(a, b):
 return a + b

 return accumulate(_add, data, 0)

my_sum(range(5))

10

def bigger(a, b):
 if b > a:
 return b
 return a

def my_max(data):
 return accumulate(bigger, data, -sys.float_info.max)

my_max([2, 5, 10, -11, -5])

10

from functools import reduce

def my_max(data):
 return reduce(bigger, data, -sys.float_info.max)

my_max([2, 5, 10, -11, -5])

10

def most_Cs_in_any_sequence(sequences):
 def count_Cs(sequence):
 return sequence.count("C")

 counts = map(count_Cs, sequences)
 return max(counts)

def most_Gs_in_any_sequence(sequences):
 return max(map(lambda sequence: sequence.count("G"), sequences))

data = ["CGTA", "CGGGTAAACG", "GATTACA"]

most_Gs_in_any_sequence(data)

The syntax here means that these two definitions are identical:

The lambda keyword defines an “anonymous” function.

The above fragment defined a lambda function as a closure over base. If you understood that, you’ve got it!

To double all elements in an array:

Similarly, to find the maximum value in a sequence:

Using functional programming for numerical methods

Probably the most common use in research computing for functional programming is the application of a numerical

method to a function.

Consider this example which uses the newton function from SciPy, a root-finding function implementing the Newton-

Raphson method. The arguments we pass to newton are the function whose roots we want to find, and a starting point

to search from.

We will be using this to find the roots of the function .

Sometimes such tools return another function, for example the derivative of their input function. This is what a

naive implementation of that could look like:

4

func_name = lambda a, b, c: a + b + c

def func_name(a, b, c):
 return a + b + c

def most_of_given_base_in_any_sequence(sequences, base):
 return max(map(lambda sequence: sequence.count(base), sequences))

most_of_given_base_in_any_sequence(data, "A")

3

data = range(10)
list(map(lambda x: 2 * x, data))

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

[2 * x for x in data]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

def my_max(data):
 return reduce(lambda a, b: a if a > b else b, data, -sys.float_info.max)

my_max([2, 5, 10, -11, -5])

10

f(x) = x2 − x

%matplotlib inline

from matplotlib import pyplot as plt
from numpy import linspace, zeros
from scipy.optimize import newton

solve_me = lambda x: x**2 - x

for x0 in [2, 0.2]:
 answer = newton(solve_me, x0)
 print(f"Starting from {x0}, the root I found is {answer}")

xs = linspace(-1, 2, 50)
solved = [xs, list(map(solve_me, xs)), xs, zeros(len(xs))]

plt.plot(*solved)

Starting from 2, the root I found is 1.0
Starting from 0.2, the root I found is -3.441905100203782e-21

[<matplotlib.lines.Line2D at 0x7fc111286eb0>,
 <matplotlib.lines.Line2D at 0x7fc111286f10>]

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html
http://mathworld.wolfram.com/NewtonsMethod.html

The derivative of solve_me is , which represents a straight line. We can verify that our computations

are correct, i.e. that the returned function straight matches , by checking the value of straight at some :

or by plotting it:

Of course, coding your own numerical methods is bad, because the implementations you develop are likely to be less

efficient, less accurate and more error-prone than what you can find in existing established libraries.

For example, the above definition could be replaced by:

If you’ve done a moderate amount of calculus, then you’ll find similarities between functional programming in

computer science and Functionals in the calculus of variations.

8.2 Iterators and Generators
Estimated time for this notebook: 25 minutes

In Python, anything which can be iterated over is called an iterable:

Surprisingly often, we want to iterate over something that takes a moderately large amount of memory to store - for

example, our map images in the green-graph example.

Our green-graph example involved making an array of all the maps between London and Birmingham. This kept them all

in memory at the same time: first we downloaded all the maps, then we counted the green pixels in each of them.

This would NOT work if we used more points: eventually, we would run out of memory. We need to use a generator

instead. This chapter will look at iterators and generators in more detail: how they work, when to use them, how to

create our own.

Iterators

Consider the basic python range function:

def derivative_simple(func, eps, at):
 return (func(at + eps) - func(at)) / eps

def derivative(func, eps):
 def _func_derived(x):
 return (func(x + eps) - func(x)) / eps

 return _func_derived

straight = derivative(solve_me, 0.01)

f ′(x) = 2x − 1

f ′(x) x

straight(3)

5.00999999999987

derived = (xs, list(map(solve_me, xs)), xs, list(map(derivative(solve_me, 0.01),
xs)))
plt.plot(*derived)
print(newton(derivative(solve_me, 0.01), 0))

0.495000000000001

import scipy.misc

def derivative(func):
 def _func_derived(x):
 return scipy.misc.derivative(func, x)

 return _func_derived

newton(derivative(solve_me), 0)

0.5

bowl = {"apple": 5, "banana": 3, "orange": 7}

for fruit in bowl:
 print(fruit.upper())

APPLE
BANANA
ORANGE

range(10)

In order to avoid allocating a million integers, range actually uses an iterator.

We don’t actually need a million integers at once, just each integer in turn up to a million.

Because we can get an iterator from it, we say that a range is an iterable.

So we can for-loop over it:

There are two important Python built-in functions for working with iterables. First is iter, which lets us create

an iterator from any iterable object.

Once we have an iterator object, we can pass it to the next function. This moves the iterator forward, and gives us

its next element:

When we are out of elements, a StopIteration exception is raised:

This tells Python that the iteration is over. For example, if we are in a for i in range(3) loop, this lets us know

when we should exit the loop.

We can turn an iterable or iterator into a list with the list constructor function:

Defining Our Own Iterable

When we write next(a), under the hood Python tries to call the __next__() method of a. Similarly, iter(a) calls

a.__iter__().

We can make our own iterators by defining classes that can be used with the next() and iter() functions: this is the

iterator protocol.

For each of the concepts in Python, like sequence, container, iterable, the language defines a protocol, a set of

methods a class must implement, in order to be treated as a member of that concept.

To define an iterator, the methods that must be supported are __next__() and __iter__().

__next__() must update the iterator.

We’ll see why we need to define __iter__ in a moment.

Here is an example of defining a custom iterator class:

range(0, 10)

total = 0
for x in range(int(1e6)):
 total += x

total

499999500000

for i in range(3):
 print(i)

0
1
2

a = iter(range(3))

next(a)

0

next(a)

1

next(a)

2

next(a)

StopIteration Traceback (most recent call last)
Cell In[9], line 1
----> 1 next(a)

StopIteration:

list(range(5))

[0, 1, 2, 3, 4]

A shortcut to iterables: the __iter__ method

In fact, we don’t always have to define both __iter__ and __next__!

If, to be iterated over, a class just wants to behave as if it were some other iterable, you can just implement

__iter__ and return iter(some_other_iterable), without implementing next. For example, an image class might want to

implement some metadata, but behave just as if it were just a 1-d pixel array when being iterated:

class fib_iterator:
 """An iterator over part of the Fibonacci sequence."""

 def __init__(self, limit, seed1=1, seed2=1):
 self.limit = limit
 self.previous = seed1
 self.current = seed2

 def __iter__(self):
 return self

 def __next__(self):
 (self.previous, self.current) = (self.current, self.previous +
self.current)
 self.limit -= 1
 if self.limit < 0:
 raise StopIteration()
 return self.current

x = fib_iterator(5)

next(x)

2

next(x)

3

next(x)

5

next(x)

8

for x in fib_iterator(5):
 print(x)

2
3
5
8
13

sum(fib_iterator(1000))

2979242185081433603368828199816319009156731305438197590327781734405367221904889045
2003450816384634553905509653388594324281497846904283041758626035944611524563466839
3210192357419233828310479227982326069668668250

from matplotlib import pyplot as plt
from numpy import array

class MyImage:
 def __init__(self, pixels):
 self.pixels = array(pixels, dtype="uint8")
 self.channels = self.pixels.shape[2]

 def __iter__(self):
 # return an iterator over just the pixel values
 return iter(self.pixels.reshape(-1, self.channels))

 def show(self):
 plt.imshow(self.pixels, interpolation="None")

x = [[[255, 255, 0], [0, 255, 0]], [[0, 0, 255], [255, 255, 255]]]
image = MyImage(x)

%matplotlib inline
image.show()

See how we used image in a for loop, even though it doesn’t satisfy the iterator protocol (we didn’t define both

__iter__ and __next__ for it)?

The key here is that we can use any iterable object (like image) in a for expression, not just iterators!

Internally, Python will create an iterator from the iterable (by calling its __iter__ method), but this means we

don’t need to define a __next__ method explicitly.

The iterator protocol is to implement both __iter__ and __next__, while the iterable protocol is to implement __iter__

and return an iterator.

Generators

There’s a fair amount of “boiler-plate” in the above class-based definition of an iterable.

Python provides another way to specify something which meets the iterator protocol: generators.

A function which has yield statements instead of a return statement returns temporarily: it automagically becomes

something which implements __next__.

Each call of next() returns control to the function where it left off.

Control passes back-and-forth between the generator and the caller. Our Fibonacci example therefore becomes a

function rather than a class.

We can now use the output of the function like a normal iterable:

image.channels

3

from webcolors import rgb_to_name

for pixel in image:
 print(rgb_to_name(pixel))

yellow
lime
blue
white

def my_generator():
 yield 5
 yield 10

x = my_generator()

next(x)

5

next(x)

10

next(x)

StopIteration Traceback (most recent call last)
Cell In[26], line 1
----> 1 next(x)

StopIteration:

for a in my_generator():
 print(a)

5
10

sum(my_generator())

15

def yield_fibs(limit, seed1=1, seed2=1):
 current = seed1
 previous = seed2

 while limit > 0:
 limit -= 1
 current, previous = current + previous, current
 yield current

sum(yield_fibs(5))

31

for a in yield_fibs(10):
 if a % 2 == 0:
 print(a)

2
8
34
144

Sometimes we may need to gather all values from a generator into a list, such as before passing them to a function

that expects a list:

Related Concepts

Iterables and generators can be used to achieve complex behaviour, especially when combined with functional

programming. In fact, Python itself contains some very useful language features that make use of these practices:

context managers and decorators. We have already seen these in this class, but here we discuss them in more detail.

Context managers

We have seen before [notebook] that, instead of separately opening and closeing a file, we can have the file be

automatically closed using a context manager:

In addition to more convenient syntax, this takes care of any clean-up that has to be done after the file is

closed, even if any errors occur while we are working on the file.

How could we define our own one of these, if we too have clean-up code we always want to run after a calling

function has done its work, or set-up code we want to do first?

We can define a class that meets an appropriate protocol:

However, this is pretty verbose! Again, a generator with yield makes for an easier syntax:

Again, we use yield to temporarily return from a function.

list(yield_fibs(10))

[2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

plt.plot(list(yield_fibs(20)))

[<matplotlib.lines.Line2D at 0x7f19341999a0>]

%%writefile example.yaml
modelname: brilliant

Writing example.yaml

import yaml

with open("example.yaml") as foo:
 print(yaml.safe_load(foo))

{'modelname': 'brilliant'}

class verbose_context:
 def __init__(self, name):
 self.name = name

 def __enter__(self):
 print("Get ready, ", self.name)

 def __exit__(self, exc_type, exc_value, traceback):
 print("OK, done")

with verbose_context("Monty"):
 print("Doing it!")

Get ready, Monty
Doing it!
OK, done

from contextlib import contextmanager

@contextmanager
def verbose_context(name):
 print("Get ready for action, ", name)
 yield name.upper()
 print("You did it")

with verbose_context("Monty") as shouty:
 print(f"Doing it, {shouty}")

Get ready for action, Monty
Doing it, MONTY
You did it

file:///home/runner/work/rse-course/rse-course/_build/module02_intermediate_python/02_04_working_with_files.html#Closing-files
file:///home/runner/work/rse-course/rse-course/_build/module02_intermediate_python/02_04_working_with_files.ipynb#Closing-files

Decorators

When doing functional programming, we may often want to define mutator functions which take in one function and

return a new function, such as our derivative example earlier.

Any function which accepts a function as its first argument and returns a function can be used as a decorator like

this:

We could also modify this to create a decorator that takes an argument specifying how many times the function

should be repeated:

It turns out that, quite often, we want to apply one of these to a function as we’re defining a class. For example,

we may want to specify that after certain methods are called, data should always be stored.

Much of Python’s standard functionality is implemented as decorators: we’ve seen @contextmanager, @classmethod and

@attribute. The @contextmanager metafunction, for example, takes in an iterator, and yields a class conforming to the

context manager protocol.

Supplementary material

The remainder of this page contains an example of the flexibility of the features discussed above. Specifically, it

shows how generators and context managers can be combined to create a testing framework like the one previously

seen in the course.

Test generators

Earlier in the course we saw a test which loaded its test cases from a YAML file and asserted each input with each

output. This was nice and concise, but had one flaw: we had just one test, covering all the fixtures, so we got

just one . in the test output when we ran the tests, and if any test failed, the rest were not run. We can do a

nicer job with a test generator:

def repeat(func):
 def _repeated(x):
 return func(func(x))

 return _repeated

def hello(name):
 return f"Hello, {name}"

print(hello("Cleese"))
print(repeat(hello)("Cleese"))

Hello, Cleese
Hello, Hello, Cleese

@repeat
def hello(name):
 return f"Hello, {name}"

hello("Cleese")

'Hello, Hello, Cleese'

def repeater(count):
 def wrap_function_in_repeat(func):
 def _repeated(x):
 counter = count
 while counter > 0:
 counter -= 1
 x = func(x)
 return x

 return _repeated

 return wrap_function_in_repeat

from math import sqrt

fiftytimes = repeater(50)
fiftyroots = fiftytimes(sqrt)

fiftyroots(100)

1.000000000000004

@repeater(3)
def hello(name):
 return f"Hello, {name}"

hello("Cleese")

'Hello, Hello, Hello, Cleese'

import os

def assert_exemplar(**fixture):
 answer = fixture.pop("answer")
 assert_equal(greet(**fixture), answer)

def test_greeter():
 with open(
 os.path.join(os.path.dirname(__file__), "fixtures", "samples.yaml")
) as fixtures_file:
 fixtures = yaml.safe_load(fixtures_file)

 for fixture in fixtures:
 yield assert_exemplar(**fixture)

Each time a function beginning with test_ does a yield it results in another test.

Negative test contexts managers

We have seen this:

We can now see how pytest might have implemented this:

Skip test decorators

Some frameworks also implement decorators for skipping tests or dealing with tests that are known to raise

exceptions (due to known bugs or limitations). For example:

We could reimplement this ourselves now too:

from pytest import raises

with raises(AttributeError):
 x = 2
 x.foo()

@contextmanager
def reimplement_raises(exception):
 try:
 yield
 except exception:
 pass
 else:
 raise Exception("Expected,", exception, " to be raised, nothing was.")

with reimplement_raises(AttributeError):
 x = 2
 x.foo()

%%writefile test_skipped.py
import pytest
import sys

@pytest.mark.skipif(sys.version_info < (4, 0), reason="requires python 4")
def test_python_4():
 raise RuntimeError("something went wrong")

Writing test_skipped.py

! pytest test_skipped.py

============================= test session starts ==============================
platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0
rootdir: /home/runner/work/rse-course/rse-
course/module08_advanced_programming_techniques
plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1
collecting ...
collected 1 item

test_skipped.py s [100%]

============================== 1 skipped in 0.01s ==============================

%%writefile test_not_skipped.py
import pytest
import sys

@pytest.mark.skipif(sys.version_info < (3, 0), reason="requires python 3")
def test_python_3():
 raise RuntimeError("something went wrong")

Writing test_not_skipped.py

! pytest test_not_skipped.py

============================= test session starts ==============================
platform linux -- Python 3.8.18, pytest-7.4.4, pluggy-1.5.0
rootdir: /home/runner/work/rse-course/rse-
course/module08_advanced_programming_techniques
plugins: cov-4.1.0, anyio-4.4.0, pylama-8.4.1
collecting ...
collected 1 item

test_not_skipped.py

F [100%]

=================================== FAILURES ===================================
________________________________ test_python_3 _________________________________

 @pytest.mark.skipif(sys.version_info < (3, 0), reason="requires python 3")
 def test_python_3():
> raise RuntimeError("something went wrong")
E RuntimeError: something went wrong

test_not_skipped.py:7: RuntimeError
=========================== short test summary info ============================
FAILED test_not_skipped.py::test_python_3 - RuntimeError: something went wrong
============================== 1 failed in 0.10s ===============================

8.3 Exceptions

Estimated time for this notebook: 15 minutes

When we learned about testing, we saw that Python complains when things go wrong by raising an “Exception” naming a

type of error:

Exceptions are objects, forming a class hierarchy. We just raised an instance of the ZeroDivisionError class, making

the program crash. If we want more information about where this class fits in the hierarchy, we can use Python’s

inspect module to get a chain of classes, from ZeroDivisionError up to object:

So we can see that a zero division error is a particular kind of Arithmetic Error.

Create your own Exception

When we were looking at testing, we saw that it is important for code to crash with a meaningful exception type

when something is wrong. We raise an Exception with raise. Often, we can look for an appropriate exception from the

standard set to raise.

However, we may want to define our own exceptions. Doing this is as simple as inheriting from Exception (or one of

its subclasses):

def homemade_skip_decorator(skip):
 def wrap_function(func):
 if skip:
 # if the test should be skipped, return a function
 # that just prints a message
 def do_nothing(*args):
 print("test was skipped")

 return do_nothing
 # otherwise use the original function as normal
 return func

 return wrap_function

@homemade_skip_decorator(3.9 < 4.0)
def test_skipped():
 raise RuntimeError("This test is skipped")

test_skipped()

test was skipped

@homemade_skip_decorator(3.9 < 3.0)
def test_runs():
 raise RuntimeError("This test is run")

test_runs()

RuntimeError Traceback (most recent call last)
Cell In[53], line 6
 1 @homemade_skip_decorator(3.9 < 3.0)
 2 def test_runs():
 3 raise RuntimeError("This test is run")
----> 6 test_runs()

Cell In[53], line 3, in test_runs()
 1 @homemade_skip_decorator(3.9 < 3.0)
 2 def test_runs():
----> 3 raise RuntimeError("This test is run")

RuntimeError: This test is run

1 / 0

ZeroDivisionError Traceback (most recent call last)
Cell In[1], line 1
----> 1 1 / 0

ZeroDivisionError: division by zero

import inspect

inspect.getmro(ZeroDivisionError)

(ZeroDivisionError, ArithmeticError, Exception, BaseException, object)

x = 1

for y in x:
 print(y)

TypeError Traceback (most recent call last)
Cell In[3], line 3
 1 x = 1
----> 3 for y in x:
 4 print(y)

TypeError: 'int' object is not iterable

inspect.getmro(TypeError)

(TypeError, Exception, BaseException, object)

https://docs.python.org/3/library/exceptions.html#exception-hierarchy
https://docs.python.org/3/library/inspect.html

You can add custom data to your exception:

The real power of exceptions comes, however, not in letting them crash the program, but in letting your program

handle them. We say that an exception has been “thrown” and then “caught”.

Note that we specify only the error we expect to happen and want to handle. Sometimes you see code that catches

everything:

This can be dangerous and can make it hard to find errors! There was a mistyped function name there (’safe_lod’),

but we did not notice the error, as the generic except caught it. Therefore, we should be specific and catch only

the type of error we want.

Managing multiple exceptions

Let’s create two credential files to read

And create a function that reads credentials files and returns the username and password to use.

class MyCustomErrorType(ArithmeticError):
 pass

raise MyCustomErrorType("Problem")

MyCustomErrorType Traceback (most recent call last)
Cell In[5], line 5
 1 class MyCustomErrorType(ArithmeticError):
 2 pass
----> 5 raise MyCustomErrorType("Problem")

MyCustomErrorType: Problem

class MyCustomErrorType(Exception):
 def __init__(self, category=None):
 self.category = category

 def __str__(self):
 return f"Error, category {self.category}"

raise MyCustomErrorType(404)

MyCustomErrorType Traceback (most recent call last)
Cell In[6], line 9
 5 def __str__(self):
 6 return f"Error, category {self.category}"
----> 9 raise MyCustomErrorType(404)

MyCustomErrorType: Error, category 404

import yaml

try:
 config = yaml.safe_load(open("datasource.yaml"))
 user = config["userid"]
 password = config["password"]

except FileNotFoundError:
 print("No password file found, using anonymous user.")
 user = "anonymous"
 password = None

print(user)

No password file found, using anonymous user.
anonymous

try:
 config = yaml.safe_lod(open("datasource.yaml"))
 user = config["userid"]
 password = config["password"]
except:
 user = "anonymous"
 password = None

print(user)

anonymous

with open("datasource2.yaml", "w") as outfile:
 outfile.write("userid: eidle\n")
 outfile.write("password: secret\n")

with open("datasource3.yaml", "w") as outfile:
 outfile.write("user: eidle\n")
 outfile.write("password: secret\n")

def read_credentials(source):
 try:
 datasource = open(source)
 config = yaml.safe_load(datasource)
 user = config["userid"]
 password = config["password"]
 datasource.close()
 except FileNotFoundError:
 print("Password file missing")
 user = "anonymous"
 password = None
 except KeyError:
 print("Expected keys not found in file")
 user = "anonymous"
 password = None
 return user, password

print(read_credentials("datasource2.yaml"))

This last code has a flaw: the file was successfully opened, the missing key was noticed, but not explicitly

closed. It’s normally OK, as Python will close the file as soon as it notices there are no longer any references to

datasource in memory, after the function exits. But this is not good practice, you should keep a file handle for as

short a time as possible.

The finally clause is executed whether or not an exception occurs.

The last optional clause of a try statement, an else clause is called only if an exception is NOT raised. It can be

a better place than the try clause to put code other than that which you expect to raise the error, and which you

do not want to be executed if the error is raised. It is executed in the same circumstances as code put in the end

of the try block, the only difference is that errors raised during the else clause are not caught.

Don’t worry if else seems useless to you; most languages’ implementations of try/except don’t support such a

clause. An alternative way of avoiding leaving the file open in the original implementation (and without using else

or finally) is to use a context manager:

Catching Exceptions Elsewhere

Exceptions do not have to be caught close to the part of the program calling them. They can be caught anywhere

“above” the calling point in the call stack: control can jump arbitrarily far in the program: up to the except

clause of the “highest” containing try statement.

('eidle', 'secret')

print(read_credentials("datasource.yaml"))

Password file missing
('anonymous', None)

print(read_credentials("datasource3.yaml"))

Expected keys not found in file
('anonymous', None)

def read_credentials(source):
 try:
 datasource = open(source)
 config = yaml.safe_load(datasource)

 try:
 print("File loaded, trying to extract credentials")
 user = config["userid"]
 password = config["password"]
 except KeyError:
 print("Expected keys not found in file")
 user = "anonymous"
 password = None
 finally:
 # Runs irrespective of whether keys found
 print("Closing file")
 datasource.close()

 except FileNotFoundError:
 print("Password file missing")
 user = "anonymous"
 password = None

 return user, password

def read_credentials(source):
 try:
 datasource = open(source)

 except FileNotFoundError:
 print("Password file missing")
 user = "anonymous"
 password = None

 else:
 # Runs only if opening the file was successful
 config = yaml.safe_load(datasource)
 try:
 print("File loaded, trying to extract credentials")
 user = config["userid"]
 password = config["password"]
 except KeyError:
 print("Expected keys not found in file")
 user = "anonymous"
 password = None
 finally:
 # Runs irrespective of whether keys found
 print("Closing file")
 datasource.close()

 return user, password

def read_credentials(source):
 try:
 with open(source) as datasource: # closes the file when done
 config = yaml.safe_load(datasource)
 user = config["userid"]
 password = config["password"]
 except FileNotFoundError:
 print("Password file missing")
 user = "anonymous"
 password = None
 except KeyError:
 print("Expected keys not found in file")
 user = "anonymous"
 password = None
 return user, password

Design with Exceptions

Now we know how exceptions work, we need to think about the design implications… How best to use them.

Traditional software design theory will tell you that they should only be used to describe and recover from

exceptional conditions: things going wrong. Normal program flow shouldn’t use them.

Python’s designers take a different view: use of exceptions in normal flow is considered OK. For example, all

iterators raise a StopIteration exception to indicate the iteration is complete.

A commonly recommended Python design pattern is to use exceptions to determine whether an object implements a

protocol (concept/interface), rather than testing on type.

For example, we might want a function which can be supplied either a data series or a path to a location on disk

where data can be found. We can examine the type of the supplied content:

def f4(x):
 if x == 0:
 return
 if x == 1:
 raise ArithmeticError()
 if x == 2:
 raise SyntaxError()
 if x == 3:
 raise TypeError()

def f3(x):
 try:
 print("F3Before")
 f4(x)
 print("F3After")
 except ArithmeticError:
 print("F3Except (💣)")

def f2(x):
 try:
 print("F2Before")
 f3(x)
 print("F2After")
 except SyntaxError:
 print("F2Except (💣)")

def f1(x):
 try:
 print("F1Before")
 f2(x)
 print("F1After")
 except TypeError:
 print("F1Except (💣)")

f1(0)

F1Before
F2Before
F3Before
F3After
F2After
F1After

f1(1)

F1Before
F2Before
F3Before
F3Except (💣)
F2After
F1After

f1(2)

F1Before
F2Before
F3Before
F2Except (💣)
F1After

f1(3)

F1Before
F2Before
F3Before
F1Except (💣)

import yaml

def analysis(source):
 if type(source) == dict:
 name = source["modelname"]
 else:
 content = open(source)
 source = yaml.safe_load(content)
 name = source["modelname"]
 print(name)

analysis({"modelname": "Super"})

Super

with open("example.yaml", "w") as outfile:
 outfile.write("modelname: brilliant\n")

analysis("example.yaml")

However, we can also use the try-it-and-handle-exceptions approach to this.

This approach is more extensible, and behaves properly if we give it some other data-source which responds like a

dictionary or string.

Re-Raising Exceptions

Sometimes we want to catch an error, partially handle it, perhaps add some extra data to the exception, and then

re-raise to be caught again further up the call stack.

The keyword “raise” with no argument in an except: clause will cause the caught error to be re-thrown. Doing this is

the only circumstance where it is safe to do except: without catching a specific type of error.

If you want to be more explicit about where the error came from, you can use the raise from syntax, which will

create a chain of exceptions:

It can be useful to catch and re-throw an error as you go up the chain, doing any clean-up needed for each layer of

a program.

The error will finally be caught and not re-thrown only at a higher program layer that knows how to recover. This

is known as the “throw low catch high” principle.

8.4 Operator overloading

Estimated time for this notebook: 15 minutes

brilliant

def analysis(source):
 try:
 name = source["modelname"]
 except TypeError:
 content = open(source)
 source = yaml.safe_load(content)
 name = source["modelname"]
 print(name)

analysis("example.yaml")

brilliant

def analysis(source):
 try:
 name = source["modelname"]
 except TypeError:
 # Source was not a dictionary-like object
 # Maybe it is a file path
 try:
 content = open(source)
 source = yaml.safe_load(content)
 name = source["modelname"]
 except IOError:
 # Maybe it was already raw YAML content
 source = yaml.safe_load(source)
 name = source["modelname"]
 print(name)

analysis("modelname: Amazing")

Amazing

try:
 # Something
 pass
except:
 # Do this code here if anything goes wrong
 raise

def lower_function():
 raise ValueError("Error in lower function!")

def higher_function():
 try:
 lower_function()
 except ValueError as e:
 raise RuntimeError("Error in higher function!") from e

higher_function()

ValueError Traceback (most recent call last)
Cell In[32], line 7, in higher_function()
 6 try:
----> 7 lower_function()
 8 except ValueError as e:

Cell In[32], line 2, in lower_function()
 1 def lower_function():
----> 2 raise ValueError("Error in lower function!")

ValueError: Error in lower function!

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
Cell In[32], line 12
 8 except ValueError as e:
 9 raise RuntimeError("Error in higher function!") from e
---> 12 higher_function()

Cell In[32], line 9, in higher_function()
 7 lower_function()
 8 except ValueError as e:
----> 9 raise RuntimeError("Error in higher function!") from e

RuntimeError: Error in higher function!

We’ve seen already during the course that some operators behave differently depending on the data type.

For example, + adds numbers but concatenates strings or lists:

* is used for multiplication, or repeated addition:

/ is division for numbers, and wouldn’t have a real meaning on strings. However, it’s used to separate files and

directories on your file system. Therefore, this has been overloaded in the pathlib module:

The above works because one of the elements is a Path object. Note, that the / works similarly to os.path.join(), so

whether you are using Unix file systems or Windows, pathlib will know what path separator to use.

Overloading operators for your own classes

Now that we have seen that in Python operators do different things, how can we use + or other operators on our own

classes to achieve similar behaviour?

Let’s go back to our Maze example, and simplify our room object so it’s defined as:

We can now create a room as:

However, when we print it we don’t get much infomation on the object. So, the first operator we are overloading is

its string represenation defining __str__:

How can we add two rooms together? What does it mean? Let’s define that the addition (+) of two rooms makes up one

with the combined size. We produce this behaviour by defining the __add__ method.

4 + 2

6

"4" + "2"

'42'

6 * 7

42

"me" * 3

'mememe'

import os
from pathlib import Path

performance = Path("..") / "module07_construction_and_design"
os.listdir(performance)

['07_01_comments.ipynb',
 '07_06_classes.ipynb',
 'fixed.png',
 '07_03_linters.ipynb',
 'config.yaml',
 '07_02_coding_conventions.ipynb',
 '07_07_design_patterns.ipynb',
 '07_08_refactoring_boids.ipynb',
 '07_00_introduction.ipynb',
 'black_example.py',
 'anotherfile.py',
 '.mypy_cache',
 'isort_example.py',
 'index.md',
 'pylint_example.py',
 'bad_boids_animation.gif',
 '__pycache__',
 '07_05_object_oriented_design.ipynb',
 'mypy_example.py',
 '07_04_refactoring.ipynb',
 'flake8_example.py']

performance = os.path.join("..", "module07_construction_and_design")

class Room:
 def __init__(self, name, area):
 self.name = name
 self.area = area

small = Room("small", 9)
print(small)

<__main__.Room object at 0x7fc40c799f70>

class Room:
 def __init__(self, name, area):
 self.name = name
 self.area = area

 def __str__(self):
 return f"<Room: {self.name} {self.area}m²>"

small = Room("small", 9)
print(small)

<Room: small 9m²>

Would the order of how the rooms are added affect the final room? As they are added now, the name is determined by

the order, but do we want that? Or would we prefer to have:

That bring us to another operator, equal to: ==. The method needed to produce such comparison is __eq__.

So, in this way two rooms of the same area are “equal” if their names are composed by the same.

You can add the other comparisons to know which room is bigger or smaller with the following functions:

Operator Function

< __lt__(self, other)

<= __le__(self, other)

> __gt__(self, other)

>= __ge__(self, other)

Let’s add people to the rooms and check whether they are in one room or not.

How do we know if John is in the room? We can check the occupants list:

Or making it more readable adding a membership definition:

We can add lots more operators to classes. For example, __getitem__ to let you index or access part of your object

like a sequence or dictionary, e.g., newObject[1] or newObject["data"], or __len__ to return a number of elements in

your object. Probably the most exciting one is __call__, which overrides the () operator; this allows us to define

class Room:
 def __init__(self, name, area):
 self.name = name
 self.area = area

 def __add__(self, other):
 return Room(f"{self.name}_{other.name}", self.area + other.area)

 def __str__(self):
 return f"<Room: {self.name} {self.area}m²>"

small = Room("small", 9)
big = Room("big", 21)
print(small, big, small + big)

<Room: small 9m²> <Room: big 21m²> <Room: small_big 30m²>

 small + big == big + small

class Room:
 def __init__(self, name, area):
 self.name = name
 self.area = area

 def __add__(self, other):
 return Room(f"{self.name}_{other.name}", self.area + other.area)

 def __eq__(self, other):
 return self.area == other.area and set(self.name.split("_")) == set(
 other.name.split("_")
)

small = Room("small", 9)
big = Room("big", 21)
large = Room("superbig", 30)
print(small + big == big + small)
print(small + big == large)

True
False

class Room:
 def __init__(self, name, area):
 self.name = name
 self.area = area
 self.occupants = []

 def add_occupant(self, name):
 self.occupants.append(name)

circus = Room("Circus", 3)
circus.add_occupant("Graham")
circus.add_occupant("Eric")
circus.add_occupant("Terry")

"John" in circus.occupants

False

class Room:
 def __init__(self, name, area):
 self.name = name
 self.area = area
 self.occupants = []

 def add_occupant(self, name):
 self.occupants.append(name)

 def __contains__(self, value):
 return value in self.occupants

circus = Room("Circus", 3)
circus.add_occupant("Graham")
circus.add_occupant("Eric")
circus.add_occupant("Terry")

"Terry" in circus

True

classes that behave like functions! We call these callables.

We’ve now come full circle in the blurring of the distinction between functions and objects! The full power of

functional programming is really remarkable.

If you want to know more about the topics in this lecture, using a different language syntax, I recommend you watch

the Abelson and Sussman “Structure and Interpretation of Computer Programs” lectures. These are the Computer

Science equivalent of the Feynman Lectures!

Next notebook shows a detailed example of how to apply operator overloading to create your own symbolic algebra

system.

8.5 Metaprogramming

⚠ Warning: Advanced Topic! ⚠

Estimated time for this notebook: 15 minutes

Metaprogramming globals

Consider a bunch of variables, each of which need initialising and incrementing:

The right hand side of these assignments doesn’t respect the DRY principle. We could of course define a variable

for our initial value:

However, this is still not as DRY as it could be: what if we wanted to replace the assignment with, say, a class

constructor and a buy operation:

We had to make the change in three places. Whenever you see a situation where a refactoring or change of design

might require you to change the code in multiple places, you have an opportunity to make the code DRYer.

In this case, metaprogramming for incrementing these variables would involve just a loop over all the variables we

want to initialise:

However, this trick doesn’t work for initialising a new variable:

So can we declare a new variable programmatically? Given a list of the names of fruit baskets we want, initialise a

variable with that name?

Every module or class in Python, is, under the hood, a special dictionary storing the values in its namespace.

globals() gives a reference to the attribute dictionary for the current module:

class Greeter:
 def __init__(self, greeting):
 self.greeting = greeting

 def __call__(self, name):
 print(self.greeting, name)

greeter_instance = Greeter("Hello")

greeter_instance("Eric")

Hello Eric

bananas = 0
apples = 0
oranges = 0
bananas += 1
apples += 1
oranges += 1

initial_fruit_count = 0
bananas = initial_fruit_count
apples = initial_fruit_count
oranges = initial_fruit_count

class Basket:
 def __init__(self):
 self.count = 0

 def buy(self):
 self.count += 1

bananas = Basket()
apples = Basket()
oranges = Basket()
bananas.buy()
apples.buy()
oranges.buy()

baskets = [bananas, apples, oranges]
for basket in baskets:
 basket.buy()

baskets = [bananas, apples, oranges, kiwis]

NameError Traceback (most recent call last)
Cell In[5], line 1
----> 1 baskets = [bananas, apples, oranges, kiwis]

NameError: name 'kiwis' is not defined

print("globals() is a\n", type(globals()))
print("\nWith these keys:\n", globals().keys())

https://www.youtube.com/watch?v=2Op3QLzMgSY

We can access variables via this dictionary:

And create new variables by assigning to this dictionary:

This is metaprogramming.

I would NOT recommend using it for an example as trivial as the one above. A better, more Pythonic choice here

would be to use a data structure to manage your set of fruit baskets:

Or even, using a dictionary comprehension:

Which is the nicest way to do this, I think. Code which feels like metaprogramming is needed to make it less

repetitive can often instead be DRYed up using a refactored data structure, in a way which is cleaner and more easy

to understand. Nevertheless, metaprogramming is worth knowing.

Metaprogramming class attributes

We can metaprogram the attributes of a module using the globals() function.

We will also want to be able to metaprogram a class, by accessing its attribute dictionary.

This will allow us, for example, to programmatically add members to a class.

If we are adding our own attributes, we can just do so directly:

And these turn up, as expected, in an attribute dictionary for the class:

We can use getattr to access this special dictionary:

If we want to add an attribute given it’s name as a string, we can use setattr:

globals() is a
 <class 'dict'>

With these keys:
 dict_keys(['__name__', '__doc__', '__package__', '__loader__', '__spec__',
'__builtin__', '__builtins__', '_ih', '_oh', '_dh', 'In', 'Out', 'get_ipython',
'exit', 'quit', 'open', '_', '__', '___', '_i', '_ii', '_iii', '_i1', 'bananas',
'apples', 'oranges', '_i2', 'initial_fruit_count', '_i3', 'Basket', '_i4',
'baskets', 'basket', '_i5', '_i6'])

globals()["apples"]

<__main__.Basket at 0x7fbd0c78e250>

apples

<__main__.Basket at 0x7fbd0c78e250>

basket_names = ["bananas", "apples", "oranges", "kiwis"]

for name in basket_names:
 globals()[name] = Basket()

kiwis.count

0

baskets = {}
for name in basket_names:
 baskets[name] = Basket()

baskets["kiwis"].count

0

baskets = {name: Basket() for name in baskets}
baskets["kiwis"].count

0

class Boring:
 pass

x = Boring()

x.name = "Michael"

x.name

'Michael'

x.__dict__

{'name': 'Michael'}

getattr(x, "name")

'Michael'

setattr(x, "age", 75)

x.age

And we could do this in a loop to programmatically add many attributes.

The real power of accessing the attribute dictionary comes when we realise that there is very little difference

between member data and member functions.

Now that we know, from our functional programming, that a function is just a variable that can be called with (),

we can set an attribute to a function, and it becomes a member function!

Note that we set this method as an attribute of the class, not the instance, so it is available to other instances

of Boring:

We can define a standalone function, and then bind it to the class. Its first argument automagically becomes self.

Metaprogramming function locals

We can access the attribute dictionary for the local namespace inside a function with locals() but this cannot be

written to.

Lack of safe programmatic creation of function-local variables is a flaw in Python.

Metaprogramming warning!

Use this stuff sparingly!

75

setattr(Boring, "describe", lambda self: f"{self.name} is {self.age}")

x.describe()

'Michael is 75'

x.describe

<bound method <lambda> of <__main__.Boring object at 0x7fbd0c5f92e0>>

Boring.describe

<function __main__.<lambda>(self)>

y = Boring()
y.name = "Terry"
y.age = 78

y.describe()

'Terry is 78'

import datetime

def broken_birth_year(b_instance):
 current = datetime.datetime.now().year
 return current - b_instance.age

Boring.birth_year = broken_birth_year

x.birth_year()

1949

x.birth_year

<bound method broken_birth_year of <__main__.Boring object at 0x7fbd0c5f92e0>>

x.birth_year.__name__

'broken_birth_year'

class Person:
 def __init__(self, name, age, job, children_count):
 for var_name, value in locals().items():
 if var_name == "self":
 continue
 print(f"Setting self.{var_name} to {value}")
 setattr(self, var_name, value)

terry = Person("Terry", 78, "Screenwriter", 0)

Setting self.name to Terry
Setting self.age to 78
Setting self.job to Screenwriter
Setting self.children_count to 0

terry.first_name

AttributeError Traceback (most recent call last)
Cell In[31], line 1
----> 1 terry.first_name

AttributeError: 'Person' object has no attribute 'first_name'

The above example worked, but it produced Python code which is not particularly understandable. Remember, your

objective when programming is to produce code which is descriptive of what it does.

The above code is definitely less readable, less maintainable and more error prone than:

Sometimes, metaprogramming will be really helpful in making non-repetitive code, and you should have it in your

toolbox, which is why I’m teaching you it. But doing it all the time overcomplicated matters. We’ve talked a lot

about the DRY principle, but there is another equally important principle:

KISS: Keep it simple, Stupid!

Whenever you write code and you think, “Gosh, I’m really clever”,you’re probably doing it wrong. Code should be

about clarity, not showing off.

8.6 Advanced operator overloading
⚠ Warning: Advanced Topic! ⚠

Estimated time for this notebook: 15 minutes

Setup for this notebook

We need to use a metaprogramming trick to make this teaching notebook work. I want to be able to put explanatory

text in between parts of a class definition, so I’ll define a decorator to help me build up a class definition

gradually.

Operator overloading

Imagine we wanted to make a library to describe some kind of symbolic algebra system:

So that might be constructed as:

This is pretty cumbersome.

What we’d really like is to have 2x+y give an appropriate expression.

First, we’ll define things so that we can construct our terms and expressions in different ways.

class Person:
 def __init__(self, name, age, job, children_count):
 self.name = name
 self.age = age
 self.job = job
 self.children_count = children_count

def extend(class_to_extend):
 """
 Metaprogramming to allow gradual implementation of class during notebook.
 Thanks to http://www.ianbicking.org/blog/2007/08/opening-python-classes.html
 """

 def decorator(extending_class):
 for name, value in extending_class.__dict__.items():
 if name in ["__dict__", "__module__", "__weakref__", "__doc__"]:
 continue
 setattr(class_to_extend, name, value)
 return class_to_extend

 return decorator

class Term:
 def __init__(self, symbols=[], powers=[], coefficient=1):
 self.coefficient = coefficient
 self.data = dict(zip(symbols, powers))

class Expression:
 def __init__(self, terms):
 self.terms = terms

5x2y + 7x + 2

first = Term(["x", "y"], [2, 1], 5)

second = Term(["x"], [1], 7)

third = Term([], [], 2)

result = Expression([first, second, third])

class Term:
 def __init__(self, *args):
 lead = args[0]
 if type(lead) == type(self):
 # Copy constructor
 self.data = dict(lead.data)
 self.coefficient = lead.coefficient
 elif type(lead) == int:
 self.from_constant(lead)
 elif type(lead) == str:
 self.from_symbol(*args)
 elif type(lead) == dict:
 self.from_dictionary(*args)
 else:
 self.from_lists(*args)

 def from_constant(self, constant):
 self.coefficient = constant
 self.data = {}

 def from_symbol(self, symbol, coefficient=1, power=1):
 self.coefficient = coefficient
 self.data = {symbol: power}

 def from_dictionary(self, data, coefficient=1):
 self.data = data
 self.coefficient = coefficient

 def from_lists(self, symbols=[], powers=[], coefficient=1):
 self.coefficient = coefficient
 self.data = dict(zip(symbols, powers))

We could define add() and multiply() operations on expressions and terms:

We can now construct the above expression as:

This is better, but we still can’t write the expression in a ‘natural’ way.

However, we can define what * and + do when applied to Terms!:

This is called operator overloading. We can define what add and multiply mean when applied to our class.

Note that this only works so far if we multiply on the right-hand-side! However, we can define a multiplication

that works backwards, which is used as a fallback if the left multiply raises an error:

class Expression:
 def __init__(self, terms=[]):
 self.terms = list(terms)

@extend(Term)
class Term:
 def add(self, *others):
 return Expression((self,) + others)

@extend(Term)
class Term:
 def multiply(self, *others):
 result_data = dict(self.data)
 result_coeff = self.coefficient
 # Convert arguments to Terms first if they are
 # constants or integers
 others = map(Term, others)

 for another in others:
 for symbol, power in another.data.items():
 if symbol in result_data:
 result_data[symbol] += power # add the powers together
 else:
 result_data[symbol] = power
 result_coeff *= another.coefficient

 return Term(result_data, result_coeff)

@extend(Expression)
class Expression:
 def add(self, *others):
 result = Expression(self.terms)

 for another in others:
 if type(another) == Term:
 result.terms.append(another)
 else:
 result.terms += another.terms

 return result

x = Term("x")
y = Term("y")

first = Term(5).multiply(x, x, y)
second = Term(7).multiply(x)
third = Term(2)
expr = first.add(second, third)

@extend(Term)
class Term:
 def __add__(self, other):
 return self.add(other)

 def __mul__(self, other):
 return self.multiply(other)

@extend(Expression)
class Expression:
 def multiply(self, another):
 # Distributive law left as exercise
 pass

 def __add__(self, other):
 return self.add(other)

x_plus_y = Term("x") + "y"
x_plus_y.terms[1]

'y'

five_x_ysq = Term("x") * 5 * "y" * "y"

print(five_x_ysq.data, five_x_ysq.coefficient)

{'x': 1, 'y': 2} 5

@extend(Expression)
class Expression:
 def __radd__(self, other):
 return self.__add__(other)

@extend(Term)
class Term:
 def __rmul__(self, other):
 return self.__mul__(other)

 def __radd__(self, other):
 return self.__add__(other)

5 * Term("x")

<__main__.Term at 0x7f9024e251f0>

It’s not easy at the moment to see if these things are working!

We can add another operator method __str__, which defines what happens if we try to print our class:

Now let’s test it.

9. Programming for Speed
Optimisation

Profiling

Scaling laws

NumPy

Cython

Contents

9.0 Performance Programming (10 minutes)

9.1 Optimising Mandelbrot (15 minutes)

9.2 Optimising with NumPy (30 minutes)

9.3 Optimising with Cython (25 minutes)

9.4 Optimising with Numba (20 minutes)

9.5 Performance Scaling for Containers and Algorithms (20 minutes)

Total time: 2 hrs

Exercises

9.6 Classroom Exercises

9.7 Solutions to Classroom Exercises

Self Study
9.8 Self Study

9.0 Performance Programming

Estimated time for this notebook: 10 minutes

We’ve spent most of this course looking at how to make code readable and reliable. For research work, it is often

also important that code is efficient: that it does what it needs to do quickly.

It is very hard to work out beforehand whether code will be efficient or not: it is essential to profile code, to

measure its performance, to determine what aspects of it are slow.

9.0.1 Motivation

First, we’ll need some code to profile. Let’s consider the series

, starting from , where is a real number and .

fivex = 5 * Term("x")
fivex.data, fivex.coefficient

({'x': 1}, 5)

@extend(Term)
class Term:
 def __str__(self):
 def symbol_string(symbol, power):
 if power == 1:
 return symbol
 return f"{symbol}^{power}"

 symbol_strings = [
 symbol_string(symbol, power) for symbol, power in self.data.items()
]

 prod = "*".join(symbol_strings)

 if not prod:
 return str(self.coefficient)
 if self.coefficient == 1:
 return prod
 return f"{self.coefficient}*{prod}"

@extend(Expression)
class Expression:
 def __str__(self):
 return "+".join(map(str, self.terms))

first = Term(5) * "x" * "x" * "y"
second = Term(7) * "x"
third = Term(2)
expr = first + second + third

print(expr)

5*x^2*y+7*x+2

zi+1 = z2
i z0 = c c i = 1, 2, 3, …

Let’s look at the values of series after 4 iterations for different starting points.

Note how quickly the series grows outside of +/- 1.

In practice, it is probably a good idea to have a way of stopping the function early (i.e., before we reach the

maximum number of iterations) when we notice that the values are exploding. So we need to pick a threshold and tell

our function to stop once the value of the series surpasses this threshold. For now (and without obvious reason) we

pick 2 as our threshold. It would be interesting to know if the function computed all iterations or stopped early

(and if so, how early). We can easily get this information by modifying the return value of our function.

def series1(start, iterations=4):
 """Returns the value of the series after the provided number of iterations."""
 value = start
 for _ in range(iterations):
 value = value**2

 return value

assert series1(0) == 0
assert series1(1) == 1
assert series1(-2) == 65536

xmin = -2
xmax = 2
resolution = 300
xstep = (xmax - xmin) / resolution
xs = [(xmin + (xstep * i)) for i in range(resolution)] # list of starting points

zs = [series1(x) for x in xs]

import matplotlib.pyplot as plt

plt.plot(xs, zs)

[<matplotlib.lines.Line2D at 0x7f71f411fcd0>]

def series2(start, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the value of the series surpasses a threshold or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """
 value = start

 counter = 0

 while counter < max_iterations:
 # Arbitrary threshold, for now
 if abs(value) > 2:
 break

 value = value**2

 counter = counter + 1

 return counter

assert series2(0) == 50
assert series2(1) == 50
assert series2(2) == 1
assert series2(1.5) == 1

zs = [series2(x) for x in xs]
plt.plot(xs, zs)

We can generalise this to complex numbers. A complex number , for example , has a real part

and an imaginary part . The definition of the imaginary unit is given by . Note that we use the

(instead of) as it is common for engineers and this is the convention that Python follows.

There’s more than one way to make a complex number in Python.

We can visualise complex numbers by plotting them in a 2D coordinate system, where the x-axis denotes the real part

and the y-axis the imaginary part. Let’s do that for our example . The distance from the origin is the

absolute value of the complex number which we compute as .

Back to our series. We want to apply our function on different complex starting points and visualise the result.

This means we need to change our line plot to a 2D heatmap.

Questions for you:

How would you describe the data structure of zs?

How many complex numbers are in the list zs?

[<matplotlib.lines.Line2D at 0x7f71f40296a0>]

c c = 5 + 6 ⋅ j Re(c) = 5

Im(c) = 6 j j = √−1 j

i

Option 1
c = complex(5, 6)

Option 2
d = 5 + 1j * 6

c = 5 + 6 ⋅ j

√Re(c)2 + Im(c)2

plt.plot(c.real, c.imag, marker="o", markersize=10)
plt.xlim(-7, 7)
plt.ylim(-7, 7)
plt.xlabel("Re(c)")
plt.ylabel("Im(c)")
plt.plot([0, c.real], [0, c.imag], "--")
plt.plot([-7, 7], [0, 0], color="black")
plt.plot([0, 0], [-7, 7], color="black")
plt.grid()

absolute value (distance from origin)
abs(c)

7.810249675906654

we need some complex starting points
xmin = -3
ymin = -3
xmax = 3
ymax = 3
resolution = 300
xstep = (xmax - xmin) / resolution
ystep = (ymax - ymin) / resolution
xs = [(xmin + xstep * i) for i in range(resolution)]
ys = [(ymin + ystep * i) for i in range(resolution)]
zs = [[series2(x + y * 1j) for x in xs] for y in ys]

plt.set_cmap("cividis") # use a color vision deficiency-friendly palette
plt.xlabel("Real")
plt.ylabel("Imaginary")
plt.imshow(zs, interpolation="none", extent=[xmin, xmax, ymin, ymax],
origin="lower")
plt.colorbar()

We see that there is a circle of radius 1 so we know that series will diverge whenever the start point is further

than 1 from the origin.

9.0.2 Mandelbrot Set

Things get much more interesting when we change the series from

 (with)

to

, starting from , where is a complex constant and .

Let’s plot the heatmap for the new series.

9.0.3 Fractals

<matplotlib.colorbar.Colorbar at 0x7f71e8ec9730>

zi+1 = z2
i z0 = c

zi+1 = z2
i + c z0 = 0 c i = 1, 2, 3, …

def mandel(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value**2) + constant

 counter = counter + 1

 return counter

assert mandel(0) == 50
assert mandel(3) == 1
assert mandel(0.5) == 5

plt.xlabel("Real")
plt.ylabel("Imaginary")
plt.imshow(
 [[mandel(x + y * 1j) for x in xs] for y in ys],
 interpolation="none",
 extent=[xmin, xmax, ymin, ymax],
 origin="lower",
)
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7f71e6bb5460>

The Mandelbrot set consists of all values of complex numbers c for which the series $z_{i+1} = z_i^2 + c$

does not diverge to infinity when iterated from the seed $z_0 = 0$.

It can be proven that if there is an for which , then the sequence tends to infinity.i |zi| > 2

The yellow area are those complex values for which the series hasn’t exploded. The values within the yellow area

form the Mandelbrot set.

It was first defined and drawn by Robert W. Brooks and Peter Matelski in 1978 but is named after Benoit Mandelbrot,

who obtained high quality visualizations of it, in 1980, while working at IBM’s Thomas J. Watson Research Center.

The boundary of the Mandelbrot set is a fractal. Fractals are geometrical patterns that are self-similar at

different scales, which means that every part of a fractal, no matter how much we zoom in, looks similar to the

whole. It’s easier to understand what that means by looking at some examples:

Here’s a nice visualisation for this on Wikipedia.

9.0.4 Timing

For the rest of this module, we will focus on the mandel() function and try to speed up our initial implementation.

If we want to get an idea for how fast or slow our code is, we need a way to time how long it takes to run. We can

use the %%timeit magic in a notebook to time a cell.

Our Mandelbrot function will loop up to 50 times for each number in our grid, which is resolution * resolution in

size. You cannot calculate the set in it’s entirety as there are infinitely many complex numbers. You need to

recalculate the set/fractal for your region of interest.

The performance of our function is limited by how quickly we can do calculations on the CPU. This isn’t always the

case and other functions could be limited by reading/writing data to a network or storage. Depending on the

bottleneck, the techniques we cover in this module might not always work to speed up code.

9.2 Optimising with NumPy

Estimated time for this notebook: 30 minutes

If we have our values in a numpy ndarray, we apply operations to each element in the array in one go, without having

to loop over it.

9.2.1 Operations on arrays

First, we want a ndarray containing the complex values that we previously used as input to our function.

xmin = -1
ymin = -1
xmax = 0
ymax = 0
resolution = 300
xstep = (xmax - xmin) / resolution
ystep = (ymax - ymin) / resolution
xs = [(xmin + xstep * i) for i in range(resolution)]
ys = [(ymin + ystep * i) for i in range(resolution)]
zs = [[mandel(x + y * 1j) for x in xs] for y in ys]

plt.xlabel("Real")
plt.ylabel("Imaginary")
plt.imshow(zs, interpolation="none", extent=[xmin, xmax, ymin, ymax],
origin="lower")
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7f71e6af8670>

%%timeit?

%%timeit -n 3 -r 7 value=10
timeit results are only useful as comparisons
the absolute values are not meaningful
variables created in timeit cells aren't available outside
value**value

379 ns ± 104 ns per loop (mean ± std. dev. of 7 runs, 3 loops each)

%%timeit
[[mandel(x + y * 1j) for x in xs] for y in ys]

666 ms ± 3.33 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

https://commons.wikimedia.org/wiki/File:Mandelbrot_sequence_new.gif#/media/File:Mandelbrot_sequence_new.gif

We now want to compare adding a constant to every element of the array by

1. using a for loop

2. using numpy operators.

Sometimes, you can use operators such as + as if we were dealing with single values. This is because the Numpy

ndarrays have overridden the __add__ operation.

But most Python functions do not know how to handle multi-dimensional arrays so we’ll use Numpy implementations

where they exist.

9.2.2 Attempt 1: Binary Mandelbrot

Numpy allows us to perform an iteration for our series on all complex values we’re interested in in a single line.

So can we just apply our mandel function to the whole matrix?

xmin = -1.5
ymin = -1.0
xmax = 0.5
ymax = 1.0
resolution = 300
xstep = (xmax - xmin) / resolution
ystep = (ymax - ymin) / resolution
xs = [(xmin + xstep * i) for i in range(resolution)]
ys = [(ymin + ystep * i) for i in range(resolution)]
list with complex values
cs_listcomp = [[(x + y * 1j) for x in xs] for y in ys]

import numpy as np

cs = np.asarray(cs_listcomp)

cs.shape

(300, 300)

we need to make copies of array to avoid overwriting it
cs_loop = cs.copy()
cs_numpy = cs.copy()

%%timeit
for i in range(cs_loop.shape[0]):
 for j in range(cs_loop.shape[1]):
 cs_loop[i][j] = cs_loop[i][j] + 10

33.6 ms ± 35.2 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
cs_numpy + 10

50.7 µs ± 243 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

import math

math.sqrt(cs)

TypeError Traceback (most recent call last)
Cell In[8], line 3
 1 import math
----> 3 math.sqrt(cs)

TypeError: only size-1 arrays can be converted to Python scalars

np.sqrt(cs)

array([[0.38908588-1.28506335j, 0.38980707-1.28268581j,
 0.39053184-1.28030535j, ..., 0.89141291-0.56090729j,
 0.89409221-0.55922644j, 0.8967725 -0.55755501j],
 [0.38670802-1.2843454j , 0.38742629-1.2819643j ,
 0.38814812-1.27958025j, ..., 0.88972681-0.55822378j,
 0.89241558-0.55654191j, 0.89510532-0.55486953j],
 [0.38432663-1.28363038j, 0.38504193-1.28124573j,
 0.3857608 -1.27885811j, ..., 0.88803965-0.55553075j,
 0.89073797-0.55384788j, 0.89343724-0.55217458j],
 ...,
 [0.38194169+1.28291834j, 0.38265402+1.28053014j,
 0.3833699 +1.27813894j, ..., 0.88635146+0.55282811j,
 0.88905943+0.55114426j, 0.8917683 +0.54947008j],
 [0.38432663+1.28363038j, 0.38504193+1.28124573j,
 0.3857608 +1.27885811j, ..., 0.88803965+0.55553075j,
 0.89073797+0.55384788j, 0.89343724+0.55217458j],
 [0.38670802+1.2843454j , 0.38742629+1.2819643j ,
 0.38814812+1.27958025j, ..., 0.88972681+0.55822378j,
 0.89241558+0.55654191j, 0.89510532+0.55486953j]])

z0 = cs
z1 = z0 * z0 + cs
z2 = z1 * z1 + cs
z3 = z2 * z2 + cs

Looking at the error message, we learn a few things:

There’s a problem with line 14, where we check if the value of the series has divereged.

There’s some confusion about the truth value of our array. Our array has more than one element (300 x 300

elements to be precise), and the if condition on line 14 returns True for some elements and False for others.

But what does True mean for the entire array: Does every element have to be True or is it enough if any element

is True? Since there’s no good answer to this, an error is raised.

What if we just apply the Mandelbrot algorithm without checking for divergence until the end:

We get an Overflow warning that we shouldn’t ignore. The overflow is caused by some values in the series exploding

and running off to .

Go to notebook 9.6 Classroom Exercises and do Exercise 9c to fix the overflow issue.

9.2.3 Attempt 2: Return iterations

The function mandel_binary (see Exercise 9c) runs on an array and is faster than our previous implementations. At

the moment, it returns a boolean value for each element of the input: True if the element is in the Mandelbrot set,

False otherwise.

It would be nice if the function returned, as before, the number of iterations that were performed. Let’s modify

the function to do exactly that:

def mandel(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

assert mandel(0) == 50
assert mandel(3) == 1
assert mandel(0.5) == 5

mandel(cs)

ValueError Traceback (most recent call last)
Cell In[12], line 1
----> 1 mandel(cs)

Cell In[11], line 14, in mandel(constant, max_iterations)
 12 counter = 0
 13 while counter < max_iterations:
---> 14 if abs(value) > 2:
 15 break
 17 value = (value * value) + constant

ValueError: The truth value of an array with more than one element is ambiguous.
Use a.any() or a.all()

def mandel_numpy_explode(constants, max_iterations=50):
 """Has the series diverged after all iterations?

 Returns an array with True if the series doesn't explode and False otherwise.
 """
 value = np.zeros(constants.shape)

 counter = 0
 while counter < max_iterations:

 value = (value * value) + constants

 counter = counter + 1

 return abs(value) < 2

result_numpy_explode = mandel_numpy_explode(cs)

/tmp/ipykernel_10424/3334138926.py:11: RuntimeWarning: overflow encountered in
multiply
 value = (value * value) + constants
/tmp/ipykernel_10424/3334138926.py:11: RuntimeWarning: invalid value encountered
in multiply
 value = (value * value) + constants

∞

Even though we’re doing unnecessary calculations (compared to our pure Python implementation), we are much faster.

Estimated time for this notebook: 20 minutes

Cython can be viewed as an extension of Python where variables and functions are annotated with extra information,

in particular types. The resulting Cython source code will be compiled into optimized C or C++ code, which can

potentially speed up slow Python code. In other words, Cython provides a way of writing Python with comparable

performance to that of C/C++.

9.3.0 How to Build Cython Code

Cython code must, unlike Python, be compiled. This happens in the following stages:

The cython code in .pyx file will be translated to a C file.

The C file will be compiled by a C compiler into a shared library, which will be directly loaded into Python.

If you’re writing .py files, you use the cythonize command in your terminal. In a Jupyter notebook, everything is a

lot easier. One needs only to load the Cython extension (%load_ext Cython) at the beginning and use %%cython cell

magic. Cells starting with %%cython will be treated as a .pyx code and, consequently, compiled.

For details, please see Building Cython Code.

9.3.1 Compiling a Pure Python Function

We’ll copy our pure Python mandel() function from the earlier notebook and redefine our real and imaginary inputs.

def mandel_numpy(constants, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops values from exploding once diverged.

 Returns the number of iterations.
 """

 value = np.zeros(constants.shape)
 # An array which keeps track of the first step at which each position diverged
 diverged_at_count = np.ones(constants.shape) * max_iterations
 counter = 0
 while counter < max_iterations:
 value = value * value + constants
 diverging = abs(value) > 2

 # Any positions which are:
 # - diverging
 # - haven't diverged before
 # are diverging for the first time
 first_diverged_this_time = np.logical_and(
 diverging, diverged_at_count == max_iterations
)

 # Update diverged_at_count for all positions which first diverged at this
step
 diverged_at_count[first_diverged_this_time] = counter
 # Reset any divergent values to exactly 2
 value[diverging] = 2
 counter = counter + 1

 return diverged_at_count

assert mandel_numpy(np.asarray([0])) == np.asarray([50])
assert mandel_numpy(np.asarray([4])) == np.asarray([0])

%%timeit
mandel_numpy(cs)

53.6 ms ± 39.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

result_numpy = mandel_numpy(cs)

import matplotlib.pyplot as plt

plt.set_cmap("cividis")
plt.xlabel("Real")
plt.ylabel("Imaginary")
plt.imshow(
 result_numpy, interpolation="none", extent=[xmin, xmax, ymin, ymax],
origin="lower"
)
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7f464bf803a0>

http://docs.cython.org/src/quickstart/build.html

We will cythonise our function without adding any type hints.

Let’s verify the result

xmin = -1.5
ymin = -1.0
xmax = 0.5
ymax = 1.0
resolution = 300
xstep = (xmax - xmin) / resolution
ystep = (ymax - ymin) / resolution
xs = [(xmin + (xmax - xmin) * i / resolution) for i in range(resolution)]
ys = [(ymin + (ymax - ymin) * i / resolution) for i in range(resolution)]

def mandel(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

assert mandel(0) == 50
assert mandel(3) == 1
assert mandel(0.5) == 5

%load_ext Cython

%%cython

def mandel_cython():
 value = 0

mandel_cython()

%%cython

def mandel_cython(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

assert mandel_cython(0) == 50
assert mandel_cython(3) == 1
assert mandel_cython(0.5) == 5

data_python = [[mandel(x + 1j * y) for x in xs] for y in ys]
data_cython = [[mandel_cython(x + 1j * y) for x in xs] for y in ys]

from matplotlib import pyplot as plt

plt.set_cmap("cividis") # use a CVD-friendly palette

f, axarr = plt.subplots(1, 2)
axarr[0].imshow(data_python, interpolation="none", extent=[xmin, xmax, ymin,
ymax])
axarr[0].set_title("Pure Python")
axarr[0].set_ylabel("Imaginary")
axarr[0].set_xlabel("Real")
axarr[1].imshow(data_cython, interpolation="none", extent=[xmin, xmax, ymin,
ymax])
axarr[1].set_title("Cython")
axarr[1].set_ylabel("Imaginary")
axarr[1].set_xlabel("Real")
f.tight_layout()

We have improved the performance of a factor of 1.5 by just using the Cython compiler, without changing the code!

9.3.2 Cython with C Types

But we can do better by telling Cython what C data types we would use in the code. Note we’re not actually writing

C, we’re writing Python with C types.

The –annotate Option

If we pass the --annotate/-a option to %%cython then it will output information about the line-by-line cost of

running your function. You can use this to target the most costly operations first or to estimate how much more

optimising there is to do.

<Figure size 640x480 with 0 Axes>

%%timeit
[[mandel(x + 1j * y) for x in xs] for y in ys] # pure python

387 ms ± 1.66 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit
[[mandel_cython(x + 1j * y) for x in xs] for y in ys] # cython

267 ms ± 900 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%cython --annotate

def mandel_cython(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

Generated by Cython 0.29.37

Yellow lines hint at Python interaction.

Click on a line that starts with a "+" to see the C code that Cython

generated for it.

 01:

+02: def mandel_cython(constant, max_iterations=50):

 03: """Computes the values of the series for up to a maximum number of
iterations.

 04:

 05: The function stops when the absolute value of the series surpasses 2 or
when it reaches the maximum

 06: number of iterations.

 07:

 08: Returns the number of iterations.

 09: """

 10:

+11: value = 0

 12:

+13: counter = 0

+14: while counter < max_iterations:

+15: if abs(value) > 2:

+16: break

 17:

+18: value = (value * value) + constant

 19:

+20: counter = counter + 1

 21:

+22: return counter

Typing Variables

Typing Function Parameters and Return Values

%%cython

def mandel_cython_var_typed(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """
 cdef double complex value # typed variable
 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

assert mandel_cython_var_typed(0) == 50
assert mandel_cython_var_typed(3) == 1
assert mandel_cython_var_typed(0.5) == 5

%%timeit
[[mandel_cython_var_typed(x + 1j * y) for x in xs] for y in ys]

169 ms ± 155 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Cython with numpy ndarray

You can use NumPy from Cython exactly the same as in regular Python, but by doing so you are losing potentially

high speedups because Cython has support for fast access to NumPy arrays.

Note the double import of numpy:

the standard numpy module

the Cython-enabled version of numpy that ensures fast indexing of and other operations on arrays.

Both import statements are necessary in code that uses numpy arrays. The new thing in the code above is declaration

of arrays by np.ndarray.

%%cython

cpdef int mandel_cython_func_typed(double complex constant, int
max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """
 cdef double complex value # typed variable
 value = 0

 cdef int counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

assert mandel_cython_func_typed(0) == 50
assert mandel_cython_func_typed(3) == 1
assert mandel_cython_func_typed(0.5) == 5

%%timeit
[[mandel_cython_func_typed(x + 1j * y) for x in xs] for y in ys]

37.7 ms ± 156 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

import numpy as np

cs_listcomp = [[(x + 1j * y) for x in xs] for y in ys]
cs = np.asarray(cs_listcomp)

%%cython

import numpy as np
cimport numpy as np

cpdef int mandel_cython_numpy(np.ndarray[double complex, ndim=2] constants, int
max_iterations=50):
 cdef np.ndarray[long,ndim=2] diverged_at_count
 cdef np.ndarray[double complex, ndim=2] value
 cdef int counter

 diverged_at_count = np.ones((constants.shape[0], constants.shape[1]),
dtype=int)*max_iterations
 value = np.zeros((constants.shape[0], constants.shape[1]), dtype=complex)
 counter = 0
 while counter < max_iterations:
 value = value*value + constants
 diverging = abs(value) > 2

 # Any positions which are:
 # - diverging
 # - haven't diverged before
 # are diverging for the first time
 first_diverged_this_time = np.logical_and(
 diverging,
 diverged_at_count == max_iterations
)

 # Update diverged_at_count for all positions which first diverged at this
step
 diverged_at_count[first_diverged_this_time] = counter
 # Reset any divergent values to exactly 2
 value[diverging] = 2
 counter = counter + 1

 return diverged_at_count

assert mandel_cython_numpy(np.asarray([[0 + 1j*0]])) == np.asarray([[50]])
assert mandel_cython_numpy(np.asarray([[4 + 1j*0]])) == np.asarray([[0]])

In file included from /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/numpy/core/include/numpy/ndarraytypes.h:1948,
 from /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/numpy/core/include/numpy/ndarrayobject.h:12,
 from /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/numpy/core/include/numpy/arrayobject.h:5,
 from
/home/runner/.cache/ipython/cython/_cython_magic_33a5a6295202ea804fc70605b98fa460.
c:775:
/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-
packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning
"Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API
NPY_1_7_API_VERSION" [-Wcpp]
 17 | #warning "Using deprecated NumPy API, disable it with " \
 | ^~~~~~~

%%timeit
mandel_cython_numpy(cs)

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars

9.4 Optimising with Numba

Estimated time for this notebook: 15 minutes

We saw that we can use Cython to get an approximate 40x speed up when compared to pure Python. However, this comes

with the cost of having to substantially rewrite the Python code. An alternative is to use numba, an open source

just-in-time compiler that translates a subset of Python and NumPy code into fast machine code.

9.4.0 Define a Pure Python Function

Let’s start by reproducing the pure-Python implementation from earlier.

9.4.1 The @njit Decorator

Now let’s look at a numba implementation for a single value. We add a Numba decorator to the pure-Python

implementation. Note that @njit is equivalent to @jit(nopython=True).

Note that numba will compile the function the first time we invoke it, so the first call will be notably slower

than the rest.

Exception ignored in:
'_cython_magic_33a5a6295202ea804fc70605b98fa460.mandel_cython_numpy'
Traceback (most recent call last):
 File "<magic-timeit>", line 1, in inner
TypeError: only size-1 arrays can be converted to Python scalars

59.7 ms ± 148 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

xmin = -1.5
ymin = -1.0
xmax = 0.5
ymax = 1.0
resolution = 300
xstep = (xmax - xmin) / resolution
ystep = (ymax - ymin) / resolution
xs = [(xmin + xstep * i) for i in range(resolution)]
ys = [(ymin + ystep * i) for i in range(resolution)]

def mandel(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

assert mandel(0) == 50
assert mandel(3) == 1
assert mandel(0.5) == 5

%%timeit

[[mandel(x + 1j * y) for x in xs] for y in ys]

384 ms ± 829 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

import numpy as np
from matplotlib import pyplot as plt
from numba import njit

@njit
def mandel_numba(constant, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 The function stops when the absolute value of the series surpasses 2 or when
it reaches the maximum
 number of iterations.

 Returns the number of iterations.
 """

 value = 0

 counter = 0
 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constant

 counter = counter + 1

 return counter

%%timeit -r 1 -n 1

mandel_numba(complex(0, 0))

256 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

https://numba.pydata.org/

This provides an approximately 10x increase in performance compared to the pure-Python implementation.

9.4.2 Parallelisation with Multiprocessing

Modern CPUs have more than one core. You can find out how many there are on your machine with

Python’s multiprocessing library works better with .py files than notebooks so we’ll write our slow function to

file.

If we change the cell above, we’ll need to reload() the sleeping module.

We can apply our square() function to each element in a list with map(). map() returns an iterator so we use list() to

get all of the results as a list, for comparison.

square() sleeps for 0.5 second each time it is called so calling it 8 times should take around 4 seconds.

We can make use of our other CPU cores by creating a pool of processes and assigning some work to each. By default,

Pool() will make one worker process for each core on the machine.

You can use Pool as a context manager…

Run after our first, timed, invocation
assert mandel_numba(0) == 50
assert mandel_numba(3) == 1
assert mandel_numba(0.5) == 5

%%timeit

[[mandel_numba(x + 1j * y) for x in xs] for y in ys]

53.8 ms ± 171 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

data_numba = [[mandel_numba(complex(x, y)) for x in xs] for y in ys]

plt.set_cmap("cividis") # use a color vision deficiency-friendly palette
plt.xlabel("Real")
plt.ylabel("Imaginary")
plt.imshow(
 data_numba, interpolation="none", extent=[xmin, xmax, ymin, ymax],
origin="lower"
)
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7fe23b7e3100>

from os import cpu_count

cpu_count()

4

%%writefile sleeping.py

from time import sleep

def square(argument):
 sleep(0.5)
 return argument * argument

Writing sleeping.py

import importlib

import sleeping

importlib.reload(sleeping)

<module 'sleeping' from '/home/runner/work/rse-course/rse-
course/module09_programming_for_speed/sleeping.py'>

assert list(map(sleeping.square, [0, 1, 2, 3])) == [0, 1, 4, 9]

%%timeit -n 2 -r 2

list(map(sleeping.square, [0, 1, 2, 3, 4, 5, 6, 7, 8]))

4.51 s ± 14.1 µs per loop (mean ± std. dev. of 2 runs, 2 loops each)

https://docs.python.org/3/library/multiprocessing.html

…or you can assign it on the same line as %%timeit so that the time taken to create the pool doesn’t count towards

the performance timing.

Note that processing all 8 elements now only takes a little over 0.5s.

If you don’t use the context manager, you should remember to close the pool.

Go to notebook 9.6 Classroom Exercises and do Exercise 9d.

9.4.3 Parallelisation with numba

Similarly to numpy, numba has optimisations related to parallelisation. Let’s see whether we can improve on the

performance of mandel_cython_numpy, the best Cython solution we found earlier. If we are certain that there are no

dependencies between different elements in a range, we can parallelize iteration by using the prange function.

from multiprocessing import Pool

with Pool() as pool:
 results = pool.map(sleeping.square, [1, 2, 3, 4, 5, 6, 7, 8])
results

[1, 4, 9, 16, 25, 36, 49, 64]

%%timeit pool = Pool()

pool.map(sleeping.square, [1, 2, 3, 4, 5, 6, 7, 8])

1 s ± 94.8 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

pool.close()

from numba import prange

help(prange)

Help on class prange in module numba.misc.special:

class prange(builtins.object)
 | prange(*args)
 |
 | Provides a 1D parallel iterator that generates a sequence of integers.
 | In non-parallel contexts, prange is identical to range.
 |
 | Static methods defined here:
 |
 | __new__(cls, *args)
 | Create and return a new object. See help(type) for accurate signature.
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

@njit(parallel=True)
def mandel_numba_parallel(constants, max_iterations=50):
 """Computes the values of the series for up to a maximum number of iterations.

 Returns the number of iterations.
 """
 xlim = constants.shape[1]
 ylim = constants.shape[0]

 diverged_at_count = np.zeros((ylim, xlim))

 for y in prange(ylim):
 for x in prange(xlim):

 value = 0
 counter = 0

 while counter < max_iterations:
 if abs(value) > 2:
 break

 value = (value * value) + constants[y, x]

 counter = counter + 1

 diverged_at_count[y, x] = counter

 return diverged_at_count

assert mandel_numba_parallel(np.asarray([[0]])) == np.asarray([[50]])
assert mandel_numba_parallel(np.asarray([[4]])) == np.asarray([[1]])

cs_listcomp = [[(x + y * 1j) for x in xs] for y in ys]
cs = np.asarray(cs_listcomp)

%%timeit
mandel_numba_parallel(cs)

12.3 ms ± 28.2 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

zs = mandel_numba_parallel(cs)

plt.xlabel("Real")
plt.ylabel("Imaginary")
plt.imshow(zs, interpolation="none", extent=[xmin, xmax, ymin, ymax],
origin="lower")
plt.colorbar()

We see that allowing numba to use all of our CPU cores has increased the performance with relatively few code

changes. The best possible speedup with parallelisation with be a factor of cpu_count() but this often won’t be

realised in practice.

More on optimising with numba in notebook 9.8 Self study.

9.5 Performance Scaling for Containers and Algorithms

Estimated time for this notebook: 15 minutes

9.5.0 Python Lists vs NumPy Arrays

We’ve seen that NumPy arrays are really useful. Why wouldn’t we always want to use them for data which is all the

same type?

Let’s look at appending data to a NumPy array, compared to a plain Python list:

<matplotlib.colorbar.Colorbar at 0x7fe251bc1790>

from timeit import repeat

import numpy as np
from matplotlib import pyplot as plt

def time_append_to_ndarray(count):
 # the function repeat does the same that the `%timeit` magic
 # but as a function; so we can plot it.
 return repeat(
 "np.append(before, [0])",
 f"import numpy as np; before=np.ndarray({count})",
 number=10000,
)

help(repeat)

Help on function repeat in module timeit:

repeat(stmt='pass', setup='pass', timer=<built-in function perf_counter>,
repeat=5, number=1000000, globals=None)
 Convenience function to create Timer object and call repeat method.

def time_append_to_list(count):
 return repeat("before.append(0)", f"before = [0] * {count}", number=10000)

counts = np.arange(1, 100000, 10000)

def plot_time(function, counts, title=None, top=None):
 plt.plot(counts, list(map(function, counts)))
 plt.ylim(bottom=0, top=top)
 plt.ylabel("seconds")
 plt.xlabel("array size")
 plt.title(title or function.__name__)

plot_time(time_append_to_list, counts)

plot_time(time_append_to_ndarray, counts)

Adding an element to a Python list is way faster! Also, it seems that adding an element to a Python list is

independent of the length of the list, but it’s not so for a NumPy array.

We would say that adding an element to a Python list is “constant time”. This is often written

We would say that adding an element to a Numpy array is “linear time”. This is written .

If something is then we shorten that to because the becomes negligible as grows very large.

 or “big oh” notation is also used to describe the amount of memory required to perform some operation such as

sorting.

Go to notebook 9.6 Classroom Exercises and do Exercise 9e.

More on optimising with numba in notebook: 9.8 Self study.

10. Scientific file formats
Serialisation and Deserialisation

Domain specific languages

Templating languages: Mako

Binary file formats: XDR and HDF5

Parsers and grammars: Python Lex and Yacc

Ontologies

Semantic file formats

Contents

10.0 Serialising and normalising data (15 minutes)

10.1 Serialising and normalising data (20 minutes)

10.2 Deserialisation (15 minutes)

10.3 Binary formats (15 minutes)

10.4 Markup languages (10 minutes)

10.5 Beyond Pandas (20 minutes)

10.6 Processing in parallel (30 minutes)

10.7 Geospatial data (10 minutes)

Additional content

OPTIONAL Domain specific languages (25 minutes)

OPTIONAL Controlled Vocabularies (15 minutes)

OPTIONAL Semantic file formats (25 minutes)

Total time: 2 hrs 15 minutes

Exercises

This module does not currently have any associated exercises.

10.0 Serialising and normalising data
Estimated time for this notebook: 15 minutes

Consider a simple python computational model of chemical reaction networks. In particular let’s consider the

combustion of glucose to carbon dioxide and water.

O(1)

O(n)

O(n + 1) O(n) 1 n

O()

We could reasonably consider using the LaTeX representation of this as a fileformat for reactions. (Though we need

to represent the molecular mass in some way we’ve not thought of.)

We’ve already shown how to serialise the data to this representation. How hard would it be to deserialise it?

Actually, pretty darn hard.

class Element:
 def __init__(self, symbol, number):
 self.symbol = symbol
 self.number = number

 def __str__(self):
 return str(self.symbol)

class Molecule:
 def __init__(self, mass):
 self.elements = {} # Map from element to number of that element in the
molecule
 self.mass = mass

 def add_element(self, element, number):
 self.elements[element] = number

 @staticmethod
 def as_subscript(number):
 if number == 1:
 return ""
 if number < 10:
 return "_" + str(number)
 return "_{" + str(number) + "}"

 def __str__(self):
 return "".join(
 [
 str(element) + Molecule.as_subscript(number)
 for element, number in self.elements.items()
]
)

class Reaction:
 def __init__(self):
 self.reactants = {} # Map from reactants to stoichiometries
 self.products = {} # Map from products to stoichiometries

 def add_reactant(self, reactant, stoichiometry):
 self.reactants[reactant] = stoichiometry

 def add_product(self, product, stoichiometry):
 self.products[product] = stoichiometry

 @staticmethod
 def print_if_not_one(number):
 if number == 1:
 return ""
 return str(number)

 @staticmethod
 def side_as_string(side):
 return " + ".join(
 [
 Reaction.print_if_not_one(side[molecule]) + str(molecule)
 for molecule in side
]
)

 def __str__(self):
 return (
 Reaction.side_as_string(self.reactants)
 + " \\rightarrow "
 + Reaction.side_as_string(self.products)
)

class System:
 def __init__(self):
 self.reactions = []

 def add_reaction(self, reaction):
 self.reactions.append(reaction)

 def __str__(self):
 return "\n".join(self.reactions)

c = Element("C", 12)
o = Element("O", 8)
h = Element("H", 1)

co2 = Molecule(44.01)
co2.add_element(c, 1)
co2.add_element(o, 2)

h2o = Molecule(18.01)
h2o.add_element(h, 2)
h2o.add_element(o, 1)

o2 = Molecule(32.00)
o2.add_element(o, 2)

glucose = Molecule(180.16)
glucose.add_element(c, 6)
glucose.add_element(h, 12)
glucose.add_element(o, 6)

combustion = Reaction()
combustion.add_reactant(glucose, 1)
combustion.add_reactant(o2, 6)
combustion.add_product(co2, 6)
combustion.add_product(h2o, 6)

print(combustion)

C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O

from IPython.display import Math, display

display(Math(str(combustion)))

C6H12O6 + 6O2 → 6CO2 + 6H2O

In the wild, such datafiles will have all kinds of complications, and making a hand-coded string parser for such

text will be highly problematic. In this lecture, we’re going to look at the kind of problems that can arise, and

some standard ways to solve them, which will lead us to the idea of normalisation in databases.

Note It is possible to create a structure which does look like such a fluent mathematical representation, which is

known as a Domain Specific Language. Some information on this is covered in the optional Domain Specific Languages

notebook.

Non-normal data representations: First normal form.

Consider the mistakes that someone might make when typing in a reaction in the above format: they could easily, if

there are multiple reactions in a system, type glucose in correctly as C_6H_{12}O_6 the first time, but the second

type accidentally type C_6H_{12}o_6.

The system wouldn’t know these are the same molecule, so, for example, if building a mass action model of reaction

kinetics, the differential equations would come out wrong.

The natural-seeming solution to this is, in your data format, to name each molecule and atom, and consider a

representation in terms of CSV files:

Writing a parser for these files would be very similar to the earthquake problem that you’ve already encountered.

However, the existence of multiple values in one column indicates that this file format is NOT first normal form

(1NF).

Note: A table is in first normal form if: every column is unique; no rows are duplicated; each column/row

intersection contains only one value.

It is not uncommon to encounter file-formats that violate 1NF in the wild. The main problem with them is that you

will eventually have to deal with the separation character that you picked (; in this case) turning up in someone’s

content and you’ll need to work out how to escape it.

The art of designing serialisations which work as row-and-column value tables for more complex data structures is

the core of database design.

Normalising the reaction model - a bad first attempt.

How could we go about normalising this model. One choice is to list each molecule-element relation as a separate

table row:

This is fine as far as it goes, but, it falls down as soon as we want to associate another property with a molecule

and atom.

We could repeat the data each time:

The existence of the same piece of information in multiple locations (eg. the 18.01 molecular mass of water)

indicates that this file format is NOT second normal form (2NF).

Furthermore, this would allow our data file to be potentially be self-inconsistent, violating the design principle

that each piece of information should be stated only once. A data structure of this type is said to be NOT second

normal form.

Note: A table is in second normal form if: it is in first normal form; none of its attributes depend on any other

attribute except the primary key.

Normalising the model - relations and keys

So, how do we do this correctly?

We need to specify data about each molecule, reaction and atom once, and then specify the relations between them.

%%writefile molecules.csv
name, elements, numbers

water, H O, 2 1
oxygen, O, 2
carbon_dioxide, C O, 1 2
glucose, C H O, 6 12 6

Writing molecules.csv

%%writefile reactions.csv

name, reactants, products, reactant_stoichiometries, product_stoichiometries

combustion_of_glucose, glucose oxygen, carbon_dioxide water, 1 6, 6 6

Writing reactions.csv

%%writefile molecules.csv
name, element, number

water, H, 2
water, O, 1
oxygen, O, 2
carbon_dioxide, C, 1
carbon_dioxide, O, 2

Overwriting molecules.csv

%%writefile molecules.csv
name, element, number, molecular_mass, atomic_number

water, H, 2, 18.01, 1
water, O, 1, 18.01, 8
oxygen, O, 2, 32.00, 8

Overwriting molecules.csv

This last table is called a join table - and is needed whenever we want to specify a “many-to-many” relationship.

Here, each atom can be in more than one molecule, and each molecule has more than one atom.

Note each table needs to have a set of columns which taken together form a unique identifier for that row; called a

“key”. If more than one is possible, we choose one and call it a primary key. In practice, we normally choose a

single column for this: hence the ‘rel_number’ column, though the tuple {molecule, symbol} here is another

candidate key.

10.1 Using databases

Estimated time for this notebook: 20 minutes

The principles of database normalisation and the relational model will be helpful when thinking about any kind of

data representation. This is true for dataframes in Pandas, tensors in tensorflow, or anything else.

However, proper databases use more sophisticated representations than just csv files including:

indices to enable hash-table like efficient lookups

support for managing multiple users at the same time.

Making a database - SQLite

Let’s look at how we would use a simple database in Python to represent atoms and molecules. If you’ve never seen

SQL before, you might want to attend an introductory course, such as one of the ‘Software Carpentry’ sessions. Here

we’re going to assume some existing knowledge but we will use a Python-style way to interact with databases instead

of relying on raw SQL.

SQLite is a simple very-lightweight database tool - without support for concurrent users - but it’s great for

little hacks like this. For full-on database work you’ll probably want to use a more fully-featured database like

https://www.postgresql.org.

The metadata for the database describing the tables present, and their columns, is defined in Python using

SQLAlchemy, the leading python database tool, thus:

%%writefile molecules.csv
name, molecular_mass

water, 18.01
oxygen, 32.00

Overwriting molecules.csv

%%writefile atoms.csv

symbol, atomic number
H, 1
O, 8
C, 6

Writing atoms.csv

%%writefile atoms_in_molecules.csv

rel_number, molecule, symbol, number
0, water, H, 2
1, water, O, 1
2, oxygen, O, 2

Writing atoms_in_molecules.csv

import os

try:
 os.remove("molecules.db")
 print("Removing database to start again from scratch")
except FileNotFoundError:
 print("No DB since this notebook was last run")

No DB since this notebook was last run

import sqlalchemy

engine = sqlalchemy.create_engine("sqlite:///molecules.db", echo=True)

from sqlalchemy import Column, Float, Integer, MetaData, String, Table

metadata = MetaData()
molecules = Table(
 "molecules",
 metadata,
 Column("name", String, primary_key=True),
 Column("mass", Float),
)

atoms = Table(
 "atoms",
 metadata,
 Column("symbol", String, primary_key=True),
 Column("number", Integer),
)

from sqlalchemy import ForeignKey, Integer

atoms_in_molecules = Table(
 "atoms_molecules",
 metadata,
 Column("atom", ForeignKey("atoms.symbol")),
 Column("molecule", ForeignKey("molecules.name")),
 Column("number", Integer),
)

https://www.postgresql.org/

Note the SQL syntax for creating tables is generated by the python tool, and sent to the database server.

We’ll turn off our automatic printing of all the raw sql to avoid this notebook being unreadable.

We can also write data to our database using this python tooling:

metadata.create_all(engine)
print(metadata)

2024-06-03 08:16:39,924 INFO sqlalchemy.engine.Engine BEGIN (implicit)

2024-06-03 08:16:39,925 INFO sqlalchemy.engine.Engine PRAGMA
main.table_info("molecules")

2024-06-03 08:16:39,925 INFO sqlalchemy.engine.Engine [raw sql] ()

2024-06-03 08:16:39,926 INFO sqlalchemy.engine.Engine PRAGMA
temp.table_info("molecules")

2024-06-03 08:16:39,927 INFO sqlalchemy.engine.Engine [raw sql] ()

2024-06-03 08:16:39,928 INFO sqlalchemy.engine.Engine PRAGMA
main.table_info("atoms")

2024-06-03 08:16:39,929 INFO sqlalchemy.engine.Engine [raw sql] ()

2024-06-03 08:16:39,930 INFO sqlalchemy.engine.Engine PRAGMA
temp.table_info("atoms")

2024-06-03 08:16:39,930 INFO sqlalchemy.engine.Engine [raw sql] ()

2024-06-03 08:16:39,931 INFO sqlalchemy.engine.Engine PRAGMA
main.table_info("atoms_molecules")

2024-06-03 08:16:39,932 INFO sqlalchemy.engine.Engine [raw sql] ()

2024-06-03 08:16:39,933 INFO sqlalchemy.engine.Engine PRAGMA
temp.table_info("atoms_molecules")

2024-06-03 08:16:39,933 INFO sqlalchemy.engine.Engine [raw sql] ()

2024-06-03 08:16:39,934 INFO sqlalchemy.engine.Engine
CREATE TABLE molecules (
 name VARCHAR NOT NULL,
 mass FLOAT,
 PRIMARY KEY (name)
)

2024-06-03 08:16:39,935 INFO sqlalchemy.engine.Engine [no key 0.00047s] ()

2024-06-03 08:16:39,938 INFO sqlalchemy.engine.Engine
CREATE TABLE atoms (
 symbol VARCHAR NOT NULL,
 number INTEGER,
 PRIMARY KEY (symbol)
)

2024-06-03 08:16:39,938 INFO sqlalchemy.engine.Engine [no key 0.00046s] ()

2024-06-03 08:16:39,941 INFO sqlalchemy.engine.Engine
CREATE TABLE atoms_molecules (
 atom VARCHAR,
 molecule VARCHAR,
 number INTEGER,
 FOREIGN KEY(atom) REFERENCES atoms (symbol),
 FOREIGN KEY(molecule) REFERENCES molecules (name)
)

2024-06-03 08:16:39,941 INFO sqlalchemy.engine.Engine [no key 0.00049s] ()

2024-06-03 08:16:39,944 INFO sqlalchemy.engine.Engine COMMIT

MetaData()

CREATE TABLE molecules (
 name VARCHAR NOT NULL,
 mass FLOAT,
 PRIMARY KEY (name)
)

engine.echo = False

ins = molecules.insert().values(name="water", mass="18.01")

conn = engine.connect()
conn.execute(ins)

And query it:

If we have enough understanding of SQL syntax, we can use appropriate join statements to find, for example, the

mass of all molecules which contain oxygen:

But we can do much better…

Data and Objects - the Object-Relational-Mapping

We notice that when we find a correct relational model for our data, many of the rows are suggestive of exactly the

data we would expect to supply to an object constructor - data about an object. References to keys of other tables

in rows suggest composition relations while many-to-many join tables often represent aggregation relationships, and

data about the relationship.

As a result of this, powerful tools exist to automatically create object structures from database schema, including

saving and loading.

If we now create our tables, the system will automatically create a DB:

/tmp/ipykernel_10731/3952573975.py:2: RemovedIn20Warning: Deprecated API features
detected! These feature(s) are not compatible with SQLAlchemy 2.0. To prevent
incompatible upgrades prior to updating applications, ensure requirements files
are pinned to "sqlalchemy<2.0". Set environment variable SQLALCHEMY_WARN_20=1 to
show all deprecation warnings. Set environment variable
SQLALCHEMY_SILENCE_UBER_WARNING=1 to silence this message. (Background on
SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)
 conn.execute(ins)

<sqlalchemy.engine.cursor.LegacyCursorResult at 0x7f4adcf3f940>

from sqlalchemy.sql import select

s = select([molecules])
result = conn.execute(s)
print(result.fetchone()["mass"])

18.01

conn.execute(molecules.insert().values(name="oxygen", mass="32.00"))
conn.execute(atoms.insert().values(symbol="O", number=8))
conn.execute(atoms.insert().values(symbol="H", number=1))
conn.execute(atoms_in_molecules.insert().values(molecule="water", atom="O",
number=1))
conn.execute(atoms_in_molecules.insert().values(molecule="oxygen", atom="O",
number=1))
conn.execute(atoms_in_molecules.insert().values(molecule="water", atom="H",
number=2))

<sqlalchemy.engine.cursor.LegacyCursorResult at 0x7f4adc323d60>

result = conn.execute(
 """
 SELECT mass
 FROM molecules
 JOIN atoms_molecules
 ON molecules.NAME = atoms_molecules.molecule
 JOIN atoms
 ON atoms.symbol = atoms_molecules.atom
 WHERE atoms.symbol = 'H'
 """
)
print(result.fetchall())

[(18.01,)]

import os

try:
 os.remove("molecules.db")
 print("Removing database to start again from scratch")
except FileNotFoundError:
 print("No DB since this notebook was last run")

Removing database to start again from scratch

import sqlalchemy

engine = sqlalchemy.create_engine("sqlite:///molecules.db")

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Element(Base):
 __tablename__ = "atoms"
 symbol = Column(String, primary_key=True)
 number = Column(Integer)
 molecules = relationship("AtomsPerMolecule", backref="atom")

class Molecule(Base):
 __tablename__ = "molecules"
 name = Column(String, primary_key=True)
 mass = Column(Float)
 atoms = relationship("AtomsPerMolecule", backref="molecule")

class AtomsPerMolecule(Base):
 __tablename__ = "atoms_per_molecule"
 id = Column(Integer, primary_key=True)
 atom_id = Column(None, ForeignKey("atoms.symbol"))
 molecule_id = Column(None, ForeignKey("molecules.name"))
 number = Column(Integer)

And we can create objects with a simple interface that looks just like ordinary classes:

This is a very powerful technique - we get our class-type interface in python, with database persistence and

searchability for free!

Moving on from databases

Databases are often a good choice for storing data, but can only be interacted with programmatically. Often, we

want to make a file format to represent our dataset which can be easily replicated or shared. The next part of this

module focuses on the design of such file-formats, both binary and human-readable.

One choice, now we know about it, is to serialise all the database tables as CSV:

name mass

0 water 18.01

1 oxygen 16.00

2 hydrogen 2.02

Deserialising is also easy:

Base.metadata.create_all(engine)

engine.echo = False

oxygen = Element(symbol="O", number=8)
hydrogen = Element(symbol="H", number=1)
elements = [oxygen, hydrogen]

water = Molecule(name="water", mass=18.01)
oxygen_m = Molecule(name="oxygen", mass=16.00)
hydrogen_m = Molecule(name="hydrogen", mass=2.02)
molecules = [water, oxygen_m, hydrogen_m]

Note that we are using the `backref` name to construct the `atom_id` and
`molecule_id`.
These lookup instances of Element and Molecule that are already in our database
amounts = [
 AtomsPerMolecule(atom=oxygen, molecule=water, number=1),
 AtomsPerMolecule(atom=hydrogen, molecule=water, number=2),
 AtomsPerMolecule(atom=oxygen, molecule=oxygen_m, number=2),
 AtomsPerMolecule(atom=hydrogen, molecule=hydrogen_m, number=2),
]

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

session.bulk_save_objects(elements + molecules + amounts)

oxygen.molecules[0].molecule.name

'water'

session.query(Molecule).all()[0].name

'water'

session.commit()

import pandas

str(session.query(Molecule).statement)

'SELECT molecules.name, molecules.mass \nFROM molecules'

dataframe = pandas.read_sql(session.query(Molecule).statement, session.bind)

dataframe

print(dataframe.to_csv())

,name,mass
0,water,18.01
1,oxygen,16.0
2,hydrogen,2.02

%%writefile atoms.csv

symbol,number
C,6
N,7

Overwriting atoms.csv

with open("atoms.csv", "r") as f_csv:
 atoms = pandas.read_csv(f_csv)
atoms

symbol number

0 C 6

1 N 7

We know from earlier that another common choice is to represent such complicated data structures is YAML.

The implications of what we’ve just learned for serialising to and from such structured data is the topic of the

next lecture.

10.2 Deserialisation

Estimated time for this notebook: 15 minutes

YAML (a recursive acronym for “YAML Ain’t Markup Language”) is a human-readable data-serialization language.

We’re going to slightly modify our previous model and look at how to serialise it to YAML.

atoms.to_sql("atoms", session.bind, if_exists="append", index=False)

2

session.query(Element).all()[3].number

7

class Element:
 def __init__(self, symbol):
 self.symbol = symbol

class Molecule:
 def __init__(self):
 self.elements = {} # Map from element to number of that element in the
molecule

 def add_element(self, element, number):
 self.elements[element] = number

 def to_struct(self):
 return {element.symbol: number for element, number in
self.elements.items()}

class Reaction:
 def __init__(self):
 self.reactants = {} # Map from reactants to stoichiometries
 self.products = {} # Map from products to stoichiometries

 def add_reactant(self, reactant, stoichiometry):
 self.reactants[reactant] = stoichiometry

 def add_product(self, product, stoichiometry):
 self.products[product] = stoichiometry

 def to_struct(self):
 return {
 "reactants": [x.to_struct() for x in self.reactants],
 "products": [x.to_struct() for x in self.products],
 "stoichiometries": list(self.reactants.values())
 + list(self.products.values()),
 }

class System:
 def __init__(self):
 self.reactions = []

 def add_reaction(self, reaction):
 self.reactions.append(reaction)

 def to_struct(self):
 return [x.to_struct() for x in self.reactions]

c = Element("C")
o = Element("O")
h = Element("H")

co2 = Molecule()
co2.add_element(c, 1)
co2.add_element(o, 2)

h2o = Molecule()
h2o.add_element(h, 2)
h2o.add_element(o, 1)

o2 = Molecule()
o2.add_element(o, 2)

h2 = Molecule()
h2.add_element(h, 2)

glucose = Molecule()
glucose.add_element(c, 6)
glucose.add_element(h, 12)
glucose.add_element(o, 6)

combustion_glucose = Reaction()
combustion_glucose.add_reactant(glucose, 1)
combustion_glucose.add_reactant(o2, 6)
combustion_glucose.add_product(co2, 6)
combustion_glucose.add_product(h2o, 6)

combustion_hydrogen = Reaction()
combustion_hydrogen.add_reactant(h2, 2)
combustion_hydrogen.add_reactant(o2, 1)
combustion_hydrogen.add_product(h2o, 2)

s = System()
s.add_reaction(combustion_glucose)
s.add_reaction(combustion_hydrogen)

s.to_struct()

Deserialising non-normal data structures

We can see that this data structure, although seemingly sensible, is horribly non-normal.

The stoichiometries information requires us to align each one to the corresponding molecule in order.

Each element is described multiple times: we will have to ensure that each mention of C comes back to the same

constructed element object.

[{'reactants': [{'C': 6, 'H': 12, 'O': 6}, {'O': 2}],
 'products': [{'C': 1, 'O': 2}, {'H': 2, 'O': 1}],
 'stoichiometries': [1, 6, 6, 6]},
 {'reactants': [{'H': 2}, {'O': 2}],
 'products': [{'H': 2, 'O': 1}],
 'stoichiometries': [2, 1, 2]}]

import yaml

print(yaml.dump(s.to_struct()))

- products:
 - C: 1
 O: 2
 - H: 2
 O: 1
 reactants:
 - C: 6
 H: 12
 O: 6
 - O: 2
 stoichiometries:
 - 1
 - 6
 - 6
 - 6
- products:
 - H: 2
 O: 1
 reactants:
 - H: 2
 - O: 2
 stoichiometries:
 - 2
 - 1
 - 2

class YamlDeSerialisingSystem:
 def __init__(self):
 self.elements = {}
 self.molecules = {}

 def add_element(self, candidate):
 if candidate not in self.elements:
 self.elements[candidate] = Element(candidate)
 return self.elements[candidate]

 def add_molecule(self, candidate):
 if tuple(candidate.items()) not in self.molecules:
 m = Molecule()
 for symbol, number in candidate.items():
 m.add_element(self.add_element(symbol), number)
 self.molecules[tuple(candidate.items())] = m
 return self.molecules[tuple(candidate.items())]

 def parse_system(self, system_dict):
 system = System()
 for reaction in system_dict:
 r = Reaction()
 stoichiometries = reaction["stoichiometries"]
 for molecule in reaction["reactants"]:
 r.add_reactant(self.add_molecule(molecule),
stoichiometries.pop(0))
 for molecule in reaction["products"]:
 r.add_product(self.add_molecule(molecule), stoichiometries.pop(0))
 system.add_reaction(r)
 return system

de_serialiser = YamlDeSerialisingSystem()
round_trip = de_serialiser.parse_system(s.to_struct())

round_trip.to_struct()

[{'reactants': [{'C': 6, 'H': 12, 'O': 6}, {'O': 2}],
 'products': [{'C': 1, 'O': 2}, {'H': 2, 'O': 1}],
 'stoichiometries': [1, 6, 6, 6]},
 {'reactants': [{'H': 2}, {'O': 2}],
 'products': [{'H': 2, 'O': 1}],
 'stoichiometries': [2, 1, 2]}]

de_serialiser.elements

{'C': <__main__.Element at 0x7f629c0f7cd0>,
 'H': <__main__.Element at 0x7f629c1b5550>,
 'O': <__main__.Element at 0x7f629c161040>}

de_serialiser.molecules

{(('C', 6), ('H', 12), ('O', 6)): <__main__.Molecule at 0x7f629c0f7c40>,
 (('O', 2),): <__main__.Molecule at 0x7f629c161430>,
 (('C', 1), ('O', 2)): <__main__.Molecule at 0x7f629c1615b0>,
 (('H', 2), ('O', 1)): <__main__.Molecule at 0x7f629c161190>,
 (('H', 2),): <__main__.Molecule at 0x7f629c161700>}

list(round_trip.reactions[0].reactants.keys())[1].to_struct()

{'O': 2}

list(round_trip.reactions[1].reactants.keys())[1].to_struct()

In order to de-serialise this data, we had to construct a unique key to distinguish repeated mentions of the same

identical item.

Effectively, we ended up choosing primary keys for our datatypes:

Remembering that a combination of columns uniquely defining an item is a valid key - there is a key correspondence

between a candidate key in the database sense and a “hashable” data structure that can be used to a key in a dict.

Note that to make this example even reasonably doable, we had to exclude additional data from the objects (mass,

rate etc)

Normalising a YAML structure

To make this structure easier to de-serialise, we can make a normalised file-format, by defining primary keys

(hashable types) for each entity on write:

We can see that to make an easily parsed file format, without having to guess-recognise repeated entities based on

their names (which is highly subject to data entry error), we effectively recover the same tables as found for the

database model.

{'O': 2}

list(de_serialiser.molecules.keys())

[(('C', 6), ('H', 12), ('O', 6)),
 (('O', 2),),
 (('C', 1), ('O', 2)),
 (('H', 2), ('O', 1)),
 (('H', 2),)]

class YamlSavingSystem:
 def __init__(self):
 self.elements = set()
 self.molecules = set()

 def element_key(self, element):
 return element.symbol

 def molecule_key(self, molecule):
 key = ""
 for element, number in molecule.elements.items():
 key += element.symbol
 key += str(number)
 return key

 def save(self, system):
 for reaction in system.reactions:
 for molecule in reaction.reactants:
 self.molecules.add(molecule)
 for element in molecule.elements:
 self.elements.add(element)
 for molecule in reaction.products:
 self.molecules.add(molecule)
 for element in molecule.elements:
 self.elements.add(element)

 result = {
 "elements": [self.element_key(element) for element in self.elements],
 "molecules": {
 self.molecule_key(molecule): {
 self.element_key(element): number
 for element, number in molecule.elements.items()
 }
 for molecule in self.molecules
 },
 "reactions": [
 {
 "reactants": {
 self.molecule_key(reactant): stoich
 for reactant, stoich in reaction.reactants.items()
 },
 "products": {
 self.molecule_key(product): stoich
 for product, stoich in reaction.products.items()
 },
 }
 for reaction in system.reactions
],
 }
 return result

saver = YamlSavingSystem()
print(yaml.dump(saver.save(s)))

elements:
- C
- O
- H
molecules:
 C1O2:
 C: 1
 O: 2
 C6H12O6:
 C: 6
 H: 12
 O: 6
 H2:
 H: 2
 H2O1:
 H: 2
 O: 1
 O2:
 O: 2
reactions:
- products:
 C1O2: 6
 H2O1: 6
 reactants:
 C6H12O6: 1
 O2: 6
- products:
 H2O1: 2
 reactants:
 H2: 2
 O2: 1

An alternative is to use a simple integer for such a primary key:

Reference counting

Using a dictionary to determine the integer keys for objects is a bit clunky.

A better approach is to use counted objects either via a static member or by using a factory pattern:

class YamlIntegerKeySavingSystem:
 def __init__(self):
 self.elements = {}
 self.molecules = {}

 def add_element(self, element):
 if element not in self.elements:
 self.elements[element] = len(self.elements)
 return self.elements[element]

 def add_molecule(self, molecule):
 if molecule not in self.molecules:
 self.molecules[molecule] = len(self.molecules)
 return self.molecules[molecule]

 def element_key(self, element):
 return self.elements[element]

 def molecule_key(self, molecule):
 return self.molecules[molecule]

 def save(self, system):
 for reaction in system.reactions:
 for molecule in reaction.reactants:
 self.add_molecule(molecule)
 for element in molecule.elements:
 self.add_element(element)
 for molecule in reaction.products:
 self.add_molecule(molecule)
 for element in molecule.elements:
 self.add_element(element)

 result = {
 "elements": [element.symbol for element in self.elements],
 "molecules": {
 self.molecule_key(molecule): {
 self.element_key(element): number
 for element, number in molecule.elements.items()
 }
 for molecule in self.molecules
 },
 "reactions": [
 {
 "reactants": {
 self.molecule_key(reactant): stoich
 for reactant, stoich in reaction.reactants.items()
 },
 "products": {
 self.molecule_key(product): stoich
 for product, stoich in reaction.products.items()
 },
 }
 for reaction in system.reactions
],
 }
 return result

saver = YamlIntegerKeySavingSystem()
print(yaml.dump(saver.save(s)))

elements:
- C
- H
- O
molecules:
 0:
 0: 6
 1: 12
 2: 6
 1:
 2: 2
 2:
 0: 1
 2: 2
 3:
 1: 2
 2: 1
 4:
 1: 2
reactions:
- products:
 2: 6
 3: 6
 reactants:
 0: 1
 1: 6
- products:
 3: 2
 reactants:
 1: 1
 4: 2

class Element:
 def __init__(self, symbol, id):
 self.symbol = symbol
 self.id = id

class Molecule:
 def __init__(self, id):
 self.elements = {} # Map from element to number of that element in the
molecule
 self.id = id

 def add_element(self, element, number):
 self.elements[element] = number

 def to_struct(self):
 return {element.symbol: number for element, number in
self.elements.items()}

class Reaction:
 def __init__(self):
 self.reactants = {} # Map from reactants to stoichiometries
 self.products = {} # Map from products to stoichiometries

 def add_reactant(self, reactant, stoichiometry):
 self.reactants[reactant] = stoichiometry

 def add_product(self, product, stoichiometry):
 self.products[product] = stoichiometry

 def to_struct(self):
 return {
 "reactants": [x.to_struct() for x in self.reactants],
 "products": [x.to_struct() for x in self.products],
 "stoichiometries": list(self.reactants.values())
 + list(self.products.values()),
 }

class System: # This will be our factory
 def __init__(self):
 self.reactions = []
 self.elements = []
 self.molecules = []

 def add_element(self, symbol):
 new_element = Element(symbol, len(self.elements))
 self.elements.append(new_element)
 return new_element

 def add_molecule(self):
 new_molecule = Molecule(len(self.molecules))
 self.molecules.append(new_molecule)
 return new_molecule

 def add_reaction(self):
 new_reaction = Reaction()
 self.reactions.append(new_reaction)
 return new_reaction

 def save(self):

 result = {
 "elements": [element.symbol for element in self.elements],
 "molecules": {
 molecule.id: {
 element.id: number for element, number in
molecule.elements.items()
 }
 for molecule in self.molecules
 },
 "reactions": [
 {
 "reactants": {
 reactant.id: stoich
 for reactant, stoich in reaction.reactants.items()
 },
 "products": {
 product.id: stoich
 for product, stoich in reaction.products.items()
 },
 }
 for reaction in self.reactions
],
 }

 return result

s2 = System()

c = s2.add_element("C")
o = s2.add_element("O")
h = s2.add_element("H")

co2 = s2.add_molecule()
co2.add_element(c, 1)
co2.add_element(o, 2)

h2o = s2.add_molecule()
h2o.add_element(h, 2)
h2o.add_element(o, 1)

o2 = s2.add_molecule()
o2.add_element(o, 2)

h2 = s2.add_molecule()
h2.add_element(h, 2)

glucose = s2.add_molecule()
glucose.add_element(c, 6)
glucose.add_element(h, 12)
glucose.add_element(o, 6)

combustion_glucose = s2.add_reaction()
combustion_glucose.add_reactant(glucose, 1)
combustion_glucose.add_reactant(o2, 6)
combustion_glucose.add_product(co2, 6)
combustion_glucose.add_product(h2o, 6)

combustion_hydrogen = s2.add_reaction()
combustion_hydrogen.add_reactant(h2, 2)
combustion_hydrogen.add_reactant(o2, 1)
combustion_hydrogen.add_product(h2o, 2)

s2.save()

10.3 Binary formats

Estimated time for this notebook: 15 minutes

Binary file formats

Now we’re getting toward a numerically-based data structure, using integers for object keys, we should think about

binary serialisation.

Binary file formats are much smaller than human-readable text based formats, so important when handling really big

datasets.

One can compress a textual file format, of course, and with good compression algorithms this will be similar in

size to the binary file. However, this has performance implications.

A hand-designed binary format is fast and small, at the loss of human readability.

Let’s remind ourselves of the model we have been using previously.

{'elements': ['C', 'O', 'H'],
 'molecules': {0: {0: 1, 1: 2},
 1: {2: 2, 1: 1},
 2: {1: 2},
 3: {2: 2},
 4: {0: 6, 2: 12, 1: 6}},
 'reactions': [{'reactants': {4: 1, 2: 6}, 'products': {0: 6, 1: 6}},
 {'reactants': {3: 2, 2: 1}, 'products': {1: 2}}]}

import yaml

print(yaml.dump(s2.save()))

elements:
- C
- O
- H
molecules:
 0:
 0: 1
 1: 2
 1:
 1: 1
 2: 2
 2:
 1: 2
 3:
 2: 2
 4:
 0: 6
 1: 6
 2: 12
reactions:
- products:
 0: 6
 1: 6
 reactants:
 2: 6
 4: 1
- products:
 1: 2
 reactants:
 2: 1
 3: 2

The problem with binary file formats, is that, lacking complex data structures, one needs to supply the length of

an item before that item:

class Element:
 def __init__(self, symbol, id):
 self.symbol = symbol
 self.id = id

class Molecule:
 def __init__(self, id):
 self.elements = {}
 self.id = id

 def add_element(self, element, number):
 self.elements[element] = number

 def to_struct(self):
 return {element.symbol: number for element, number in
self.elements.items()}

class Reaction:
 def __init__(self):
 self.reactants = {}
 self.products = {}

 def add_reactant(self, reactant, stoichiometry):
 self.reactants[reactant] = stoichiometry

 def add_product(self, product, stoichiometry):
 self.products[product] = stoichiometry

 def to_struct(self):
 return {
 "reactants": [x.to_struct() for x in self.reactants],
 "products": [x.to_struct() for x in self.products],
 "stoichiometries": list(self.reactants.values())
 + list(self.products.values()),
 }

class System:
 def __init__(self):
 self.reactions = []
 self.elements = []
 self.molecules = []

 def add_element(self, symbol):
 new_element = Element(symbol, len(self.elements))
 self.elements.append(new_element)
 return new_element

 def add_molecule(self):
 new_molecule = Molecule(len(self.molecules))
 self.molecules.append(new_molecule)
 return new_molecule

 def add_reaction(self):
 new_reaction = Reaction()
 self.reactions.append(new_reaction)
 return new_reaction

 def save(self):

 result = {
 "elements": [element.symbol for element in self.elements],
 "molecules": {
 molecule.id: {
 element.id: number for element, number in
molecule.elements.items()
 }
 for molecule in self.molecules
 },
 "reactions": [
 {
 "reactants": {
 reactant.id: stoich
 for reactant, stoich in reaction.reactants.items()
 },
 "products": {
 product.id: stoich
 for product, stoich in reaction.products.items()
 },
 }
 for reaction in self.reactions
],
 }

 return result

s = System()

c = s.add_element("C")
o = s.add_element("O")
h = s.add_element("H")

co2 = s.add_molecule()
co2.add_element(c, 1)
co2.add_element(o, 2)

h2o = s.add_molecule()
h2o.add_element(h, 2)
h2o.add_element(o, 1)

o2 = s.add_molecule()
o2.add_element(o, 2)

h2 = s.add_molecule()
h2.add_element(h, 2)

glucose = s.add_molecule()
glucose.add_element(c, 6)
glucose.add_element(h, 12)
glucose.add_element(o, 6)

combustion_glucose = s.add_reaction()
combustion_glucose.add_reactant(glucose, 1)
combustion_glucose.add_reactant(o2, 6)
combustion_glucose.add_product(co2, 6)
combustion_glucose.add_product(h2o, 6)

combustion_hydrogen = s.add_reaction()
combustion_hydrogen.add_reactant(h2, 2)
combustion_hydrogen.add_reactant(o2, 1)
combustion_hydrogen.add_product(h2o, 2)

Deserialisation is left as an exercise for the reader :).

Endian-robust binary file formats

Having prepared our data as a sequence of data which can be recorded in a single byte, we might think a binary file

format on disk is as simple as saving each number in one byte:

class FakeBinarySavingSystem:
 # Pretend binary-style writing to a list to make it easier to read at first.
 def save(self, system, buffer):
 buffer.append(len(system.elements))
 for element in system.elements:
 buffer.append(element.symbol)

 buffer.append(len(system.molecules))
 for molecule in system.molecules:
 buffer.append(len(molecule.elements))
 for element, number in molecule.elements.items():
 buffer.append(element.id)
 buffer.append(number)

 buffer.append(len(system.reactions))
 for reaction in system.reactions:
 buffer.append(len(reaction.reactants))
 for reactant, stoich in reaction.reactants.items():
 buffer.append(reactant.id)
 buffer.append(stoich)
 buffer.append(len(reaction.products))
 for product, stoich in reaction.products.items():
 buffer.append(product.id)
 buffer.append(stoich)

characterarray = []
FakeBinarySavingSystem().save(s, characterarray)

characterarray

[3,
 'C',
 'O',
 'H',
 5,
 2,
 0,
 1,
 1,
 2,
 2,
 2,
 2,
 1,
 1,
 1,
 1,
 2,
 1,
 2,
 2,
 3,
 0,
 6,
 2,
 12,
 1,
 6,
 2,
 2,
 4,
 1,
 2,
 6,
 2,
 0,
 6,
 1,
 6,
 2,
 3,
 2,
 2,
 1,
 1,
 1,
 2]

First, turn symbol characters to equivalent integers (ascii)
intarray = [x.encode("ascii")[0] if isinstance(x, str) else x for x in
characterarray]
intarray

However, this misses out on an unfortunate problem if we end up with large enough numbers to need more than one

byte per integer, or we want to represent floats: different computer designs will put the most-significant bytes of

a multi-byte integer or float either at the beginning (‘big endian’ systems) or at the end (‘little endian’

systems).

To get around this, we need to use a portable standard for making binary files.

One possible choice is XDR (standing for eXternal Data Representation). XDR is a standard data serialization format

that accounts for endian differences between systems.

A higher level approach to binary file formats: HDF5

[3,
 67,
 79,
 72,
 5,
 2,
 0,
 1,
 1,
 2,
 2,
 2,
 2,
 1,
 1,
 1,
 1,
 2,
 1,
 2,
 2,
 3,
 0,
 6,
 2,
 12,
 1,
 6,
 2,
 2,
 4,
 1,
 2,
 6,
 2,
 0,
 6,
 1,
 6,
 2,
 3,
 2,
 2,
 1,
 1,
 1,
 2]

bytearray(intarray)

bytearray(b'\x03COH\x05\x02\x00\x01\x01\x02\x02\x02\x02\x01\x01\x01\x01\x02\x01\x0
2\x02\x03\x00\x06\x02\x0c\x01\x06\x02\x02\x04\x01\x02\x06\x02\x00\x06\x01\x06\x02\
x03\x02\x02\x01\x01\x01\x02')

with open("system.mol", "wb") as binfile:
 binfile.write(bytearray(intarray))

import xdrlib

class XDRSavingSystem(System):
 def __init__(self, system):
 super().__init__()
 # Shallow Copy constructor
 self.elements = system.elements
 self.reactions = system.reactions
 self.molecules = system.molecules
 self.buffer = xdrlib.Packer()

 def _pack_pair(self, item):
 self.buffer.pack_int(item[0].id)
 self.buffer.pack_int(item[1])

 def _pack_molecule(self, mol):
 self.buffer.pack_array(mol.elements.items(), self._pack_pair)

 def _pack_reaction(self, reaction):
 self.buffer.pack_array(reaction.reactants.items(), self._pack_pair)
 self.buffer.pack_array(reaction.products.items(), self._pack_pair)

 def save(self):
 el_symbols = list(map(lambda x: x.symbol.encode("utf-8"), self.elements))
 # Note that pack_array AUTOMATICALLY packs the length of the array first!
 self.buffer.pack_array(el_symbols, self.buffer.pack_string)
 self.buffer.pack_array(self.molecules, self._pack_molecule)
 self.buffer.pack_array(self.reactions, self._pack_reaction)
 return self.buffer

xdrsys = XDRSavingSystem(s)

xdrbuffer = xdrsys.save()
xdrbuffer.get_buffer()

b'\x00\x00\x00\x03\x00\x00\x00\x01C\x00\x00\x00\x00\x00\x00\x01O\x00\x00\x00\x00\x
00\x00\x01H\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x0
0\x01\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\
x02\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x0
2\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x00\
x00\x00\x00\x06\x00\x00\x00\x02\x00\x00\x00\x0c\x00\x00\x00\x01\x00\x00\x00\x06\x0
0\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x02\x00\
x00\x00\x06\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x01\x00\x0
0\x00\x06\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\
x00\x01\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x02'

This was quite painful. We’ve shown you it because it is very likely you will encounter this kind of unpleasant

binary file format in your work.

However, one recommended approach to building binary file formats is to use HDF5 (Hierarchical Data Format), a much

higher level binary file format.

HDF5’s approach requires you to represent your system in terms of high-dimensional matrices, like NumPy arrays. It

then saves these, and handles all the tedious number-of-field management for you.

Note that this binary representation is not human readable at all.

Using a sparse matrix storage would be even better here, but we don’t have time for that!

10.4 Markup Languages

import h5py
import numpy as np

class HDF5SavingSystem(System):
 def __init__(self, system):
 super().__init__()
 # Shallow Copy constructor
 self.elements = system.elements
 self.reactions = system.reactions
 self.molecules = system.molecules

 def element_symbols(self):
 return list(map(lambda x: x.symbol.encode("ascii"), self.elements))

 def molecule_matrix(self):
 molecule_matrix = np.zeros((len(self.elements), len(self.molecules)),
dtype=int)

 for molecule in self.molecules:
 for element, n in molecule.elements.items():
 molecule_matrix[element.id, molecule.id] = n

 return molecule_matrix

 def reaction_matrix(self):
 reaction_matrix = np.zeros(
 (len(self.molecules), len(self.reactions)), dtype=int
)

 for i, reaction in enumerate(self.reactions):
 for reactant, n in reaction.reactants.items():
 reaction_matrix[reactant.id, i] = -1 * n

 for product, n in reaction.products.items():
 reaction_matrix[product.id, i] = n

 return reaction_matrix

 def write(self, filename):
 hdf = h5py.File(filename, "w")
 string_type = h5py.special_dtype(vlen=bytes)
 hdf.create_dataset(
 "symbols", (len(self.elements), 1), string_type,
self.element_symbols()
)
 hdf.create_dataset("molecules", data=self.molecule_matrix())
 hdf.create_dataset("reactions", data=self.reaction_matrix())
 hdf.close()

saver = HDF5SavingSystem(s)

saver.element_symbols()

[b'C', b'O', b'H']

saver.molecule_matrix()

array([[1, 0, 0, 0, 6],
 [2, 1, 2, 0, 6],
 [0, 2, 0, 2, 12]])

saver.reaction_matrix()

array([[6, 0],
 [6, 2],
 [-6, -1],
 [0, -2],
 [-1, 0]])

saver.write("foo.hdf5")

with open("foo.hdf5", "rb") as f_in:
 bytes = f_in.read()
bytes[0:100]

b'\x89HDF\r\n\x1a\n\x00\x00\x00\x00\x00\x08\x08\x00\x04\x00\x10\x00\x00\x00\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xf8\x18\x00\x00\
x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00`\x
00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x88\x00\x00\x00\x00\x00
\x00\x00\xa8\x02\x00\x00\x00\x00\x00\x00\x01\x00\x01\x00'

hdf_load = h5py.File("foo.hdf5")

np.array(hdf_load["reactions"])

array([[6, 0],
 [6, 2],
 [-6, -1],
 [0, -2],
 [-1, 0]])

Estimated time for this notebook: 10 minutes

XML and its relatives (including HTML) are based on the idea of marking up content with labels on its purpose:

We want to represent the chemical reactions:

In xml this might look like:

Markup languages are verbose (jokingly called the “angle bracket tax”) but very clear.

Parsing XML

XML is normally parsed by building a tree-structure of all the tags in the file, called a DOM or Document Object

Model.

We can navigate the tree, with each element being an iterable yielding its children:

Searching XML

<name>James</name> is a <job>Programmer</job>

C6H12O6 + 6O2 → 6CO2 + 6H2O2H2 + O2 → 2H2O

%%writefile system.xml
<?xml version="1.0" encoding="UTF-8"?>
<system>
 <reaction>
 <reactants>
 <molecule stoichiometry="1">
 <atom symbol="C" number="6"/>
 <atom symbol="H" number="12"/>
 <atom symbol="O" number="6"/>
 </molecule>
 <molecule stoichiometry="6">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="6">
 <atom symbol="C" number="1"/>
 <atom symbol="O" number="2"/>
 </molecule>
 <molecule stoichiometry="6">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
 <reaction>
 <reactants>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 </molecule>
 <molecule stoichiometry="1">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
</system>

Writing system.xml

from lxml import etree

with open("system.xml", "r") as xmlfile:
 tree = etree.parse(xmlfile)
print(etree.tostring(tree, pretty_print=True, encoding=str))

<system>
 <reaction>
 <reactants>
 <molecule stoichiometry="1">
 <atom symbol="C" number="6"/>
 <atom symbol="H" number="12"/>
 <atom symbol="O" number="6"/>
 </molecule>
 <molecule stoichiometry="6">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="6">
 <atom symbol="C" number="1"/>
 <atom symbol="O" number="2"/>
 </molecule>
 <molecule stoichiometry="6">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
 <reaction>
 <reactants>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 </molecule>
 <molecule stoichiometry="1">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
</system>

tree.getroot()[0][0][1].attrib["stoichiometry"]

'6'

xpath is a sophisticated tool for searching XML DOMs:

There’s a good explanation of how it works here: https://www.w3schools.com/xml/xml_xpath.asp but the basics are

reproduced below.

XPath Expression Result

/bookstore/book[1] Selects the first book that is the child of a bookstore

/bookstore/book[last()] Selects the last book that is the child of a bookstore

/bookstore/book[last()-1] Selects the last but one book that is the child of a bookstore

/bookstore/book[position()<3] Selects the first two books that are children of a bookstore

//title[@lang] Selects all titles that have an attribute named “lang”

//title[@lang='en'] Selects all titles that have a “lang” attribute with a value of “en”

/bookstore/book[price>35.00]
Selects all books that are children of a bookstore and have a price with a value

greater than 35.00

/bookstore/book[price>35.00]/title
Selects all the titles of a book of a bookstore that have a price with a value

greater than 35.00

It is useful to understand grammars like these using the “FOR-LET-WHERE-ORDER-RETURN” (pronounced Flower) model.

The above says: “For element in molecules where number is one, return symbol”, roughly equivalent to [element.symbol

for element in molecule for molecule in document if element.number==1] in Python.

Transforming XML : XSLT

Two technologies (XSLT and XQUERY) provide capability to produce text output from an XML tree.

We’ll look at XSLT as support is more widespread, including in the python library we’re using. XQuery is probably

easier to use and understand, but with less support.

However, XSLT is a beautiful functional declarative language, once you read past the angle-brackets.

Here’s an XSLT to transform our reaction system into a LaTeX representation:

For all molecules
... with a child atom whose number attribute is '1'
... return the symbol attribute of that child
tree.xpath("//molecule/atom[@number='1']/@symbol")

['C', 'O', 'O']

%%writefile xmltotex.xsl

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes" />

 <!-- Decompose reaction into "reactants \rightarrow products" -->
 <xsl:template match="//reaction">
 <xsl:apply-templates select="reactants"/>
 <xsl:text> \rightarrow </xsl:text>
 <xsl:apply-templates select="products"/>
 <xsl:text>\\
</xsl:text>
 </xsl:template>

 <!-- For a molecule anywhere except the first position write " + " and the
number of molecules-->
 <xsl:template match="//molecule[position()!=1]">
 <xsl:text> + </xsl:text>
 <xsl:apply-templates select="@stoichiometry"/>
 <xsl:apply-templates/>
 </xsl:template>

 <!-- For a molecule in first position write the number of molecules -->
 <xsl:template match="//molecule[position()=1]">
 <xsl:apply-templates select="@stoichiometry"/>
 <xsl:apply-templates/>
 </xsl:template>

 <!-- If the stoichiometry is one then ignore it -->
 <xsl:template match="@stoichiometry[.='1']"/>

 <!-- Otherwise, use the default template for attributes, which is just to copy
value -->

 <!-- Decompose element into "symbol number" -->
 <xsl:template match="//atom">
 <xsl:value-of select="@symbol"/>
 <xsl:apply-templates select="@number"/>
 </xsl:template>

 <!-- If the number of elements/molecules is one then ignore it -->
 <xsl:template match="@number[.=1]"/>

 <!-- ... otherwise replace it with "_ value" -->
 <xsl:template match="@number[.!=1][10>.]">
 <xsl:text>_</xsl:text>
 <xsl:value-of select="."/>
 </xsl:template>

 <!-- If a number is greater than 10 then wrap it in "{}" -->
 <xsl:template match="@number[.!=1][.>9]">
 <xsl:text>_{</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>}</xsl:text>
 </xsl:template>

 <!-- Do not copy input whitespace to output -->
 <xsl:template match="text()" />
</xsl:stylesheet>

Writing xmltotex.xsl

with open("xmltotex.xsl") as xslfile:
 transform_xsl = xslfile.read()
transform = etree.XSLT(etree.XML(transform_xsl))

print(str(transform(tree)))

https://www.w3schools.com/xml/xml_xpath.asp

Which is back to the LaTeX representation of our reactions.

Validating XML : Schema

XML Schema is a way to define how an XML file is allowed to be: which attributes and tags should exist where.

You should always define one of these when using an XML file format.

Compare parsing something that is not valid under the schema:

This shows us that the validation has failed and why.

C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O\\
2H_2 + O_2 \rightarrow 2H_2O\\

%%writefile reactions.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="atom">
 <xs:complexType>
 <xs:attribute name="symbol" type="xs:string"/>
 <xs:attribute name="number" type="xs:integer"/>
 </xs:complexType>
</xs:element>

<xs:element name="molecule">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="atom" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="stoichiometry" type="xs:integer"/>
 </xs:complexType>
</xs:element>

<xs:element name="reaction">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="reactants">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="molecule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="products">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="molecule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="system">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="reaction" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

Writing reactions.xsd

with open("reactions.xsd") as xsdfile:
 schema_xsd = xsdfile.read()
schema = etree.XMLSchema(etree.XML(schema_xsd))

parser = etree.XMLParser(schema=schema)

with open("system.xml") as xmlfile:
 tree = etree.parse(xmlfile, parser)
For all atoms return their symbol attribute
tree.xpath("//atom/@symbol")

['C', 'H', 'O', 'O', 'C', 'O', 'H', 'O', 'H', 'O', 'H', 'O']

%%writefile invalid_system.xml

<system>
 <reaction>
 <reactants>
 <molecule stoichiometry="two">
 <atom symbol="H" number="2"/>
 </molecule>
 <molecule stoichiometry="1">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
</system>

Writing invalid_system.xml

try:
 with open("invalid_system.xml") as xmlfile:
 tree = etree.parse(xmlfile, parser)
 tree.xpath("//element//@symbol")
except etree.XMLSyntaxError as e:
 print(e)

Element 'molecule', attribute 'stoichiometry': 'two' is not a valid value of the
atomic type 'xs:integer'. (<string>, line 0)

10.5 Larger datasets - beyond pandas and CSV

Estimated time for this notebook: 20 minutes.

Much of the data that we deal with can be represented in tabular form, and can be handled in data structures such

as the pandas DataFrame. We have already (briefly) seen how we can read and write csv files from pandas, and there

are also methods for reading the results of SQL queries into pandas DataFrames.

However, if we have very large datasets (millions of rows), or cases where we need fast and intensive processing on

these tables, pandas may not be the best choice.

Row-wise vs column-wise

Let’s read a csv file containing international men’s football results into a pandas DataFrame:

Unnamed:
0 date home_team away_team home_score away_score tournament city country neutral

0 0 1872-
11-30 Scotland England 0 0 Friendly Glasgow Scotland False

1 1 1873-
03-08 England Scotland 4 2 Friendly London England False

2 2 1874-
03-07 Scotland England 2 1 Friendly Glasgow Scotland False

3 3 1875-
03-06 England Scotland 2 2 Friendly London England False

4 4 1876-
03-04 Scotland England 3 0 Friendly Glasgow Scotland False

The obvious way to think of this table is “row-wise” i.e. each row is a single match, with various attributes (the

columns). If we want to look at a certain match, we can pick it out using its index, and then look at it in detail:

Similarly, when more matches get played, we can simply append more rows to the end of the table.

However, for storing the data and for performing some types of operation on it, this is far from the most efficient

approach. Note that the different columns here have different types - we have dates, strings, integers, bools. If

we look at the data in a columnar way, we can make use of this, and use some compression tricks.

Since some data types such as integers have fixed and known sizes, we can easily imagine that it’s more efficient

to pack these together, so the “home_score” column would be [0,4,2,2,3,…], without having to worry about other

columns containing e.g. strings, of varying size.

However, we can do even better.

Run length compression

If we look at the last column, which is a boolean telling us whether the match was at a “neutral” venue (e.g. at a

World Cup or European Championship). Most matches will be at non-neutral venues, but every two or four years there

will be a cluster of “neutral” matches.

We could save a lot of space, with no loss of information, if rather than saving every value, we instead save

something that means “False 198 times, followed by True 64 times, followed by …”.

Dictionary compression

Often the most space-consuming type in a dataset is a string. Each character will take one or two bytes (based on

either UTF-8 or UTF-16 encoding), and we could either store each one as a variable-length string (so short strings

will take less space than long strings), or we can decide on a maximum length for our string field, and pad the

shorter strings. The former option takes less space, but is much less efficient when it comes to looking up values.

However, in many data tables, the same values are repeated many times.

import pandas as pd

df = pd.read_csv("match_results.csv")
df.head()

match = df.iloc[3]
print(f"{match.home_team} {match.home_score}:{match.away_score}
{match.away_team}")

England 2:2 Scotland

find the longest run of matches with the same value of 'neutral'
previous_val = df.neutral.values[0]
run = 0
longest_run = 0
for val in df.neutral.values[1:]:
 if val == previous_val:
 run += 1
 if run > longest_run:
 longest_run = run
 else:
 run = 0
print("longest run is:", longest_run)

longest run is: 198

how many rows in the table?
print(f"Table has {len(df)} rows")
how many unique values in 'home_team' column?
print(f"Number of unique home_team values: {len(df.home_team.unique())}")
how many times does 'Brazil' appear?
print(f"Brazil has been the home team {df.home_team.value_counts().Brazil} times")

Table has 44060 rows
Number of unique home_team values: 311
Brazil has been the home team 591 times

Again, we could save a lot of space if we make a lookup table, so we e.g. assign each team name to an integer, and

rather than taking 20 bytes to store the longest team name, we would just use 2 bytes for every team.

Delta compression

If we really want to compress our data as much as possible for writing to disk, and we don’t care about making it

human readable, we can use further tricks such as delta compression. For time series data, if something is

relatively smoothly varying, we can save a lot of space by storing just the difference from one data point to the

next, rather than each value. As an illustration of how this could work: rather than storing all the dates in the

“date” table of our dataframe, we could just store the first date, and then for every subsequent row we just store

the number of days since the previous row.

In the case where the column we’re trying to compress contains integers or floats, we wouldn’t save any space if we

were to store the differences as integers or floats as well, but lots of clever schemes exist for packing small

deltas within a few bytes.

For example, given the sequence:

5, 3, 3, 4, 2, 1, 2, 0

the deltas are:

-2, 0, 1, -2, -1, 1, -2

we can rescale this set of deltas by subtracting the minimum value (-2) from each element, such that the new

minimum is 0, giving:

0, 2, 3, 0, 1, 3, 0

and finally we can encode this “block” along with a “header”, as follows:

For this trivial example, we are not actually saving that much space, but we could extend this to have many more

blocks, and/or longer blocks, and/or have a block/miniblock structure (e.g. for when we need to change the bitwidth

to deal with larger deltas), and the overall saving could be huge.

Of course, doing all these compression steps by hand is fiddly, and we would be very likely to make a mistake! But

luckily, libraries exist that do the hard work for us, and can seamlessly convert between pandas DataFrames and

compressed columnar formats.

Putting this into action: parquet

One data format that implements all these forms of compression (see here) is “parquet”: https://parquet.apache.org/

Parquet files can be read in many languages, including Python, R, C++, and Java.

Let’s write our dataframe as a parquet file:

How much space did we save compared to the csv?

About a factor of 9!

Arrow and feather

You may have noticed that one of the packages that we installed in order to write the parquet file was pyarrow.

Apache arrow is one of the under-the-hood technologies that parquet uses to process data. It is an “in-memory”

columnar data format with some nice properties: random access is O(1) and each value cell is next to the previous

and following one in memory, so it is efficient for iteration.

We can convert our pandas dataframe directly into an arrow table:

header: 8 (block size), 5 (first value)
block: -2 (minimum delta), 2 (bitwidth), 00101100011100b (0,2,3,0,1,3,0 packed on 2 bits)

df.to_parquet("match_results.parquet")

!du -skh match_results.*

3.4M match_results.csv
700K match_results.parquet

from timeit import timeit

import pyarrow as pa
import pyarrow.compute as pc

table = pa.Table.from_pandas(df)
table

https://github.com/apache/parquet-format/blob/master/Encodings.md
https://parquet.apache.org/

Some things such as summing over columns are usually faster than in pandas:

So arrow is about a factor 3-4 faster in this particular case.

Should we always use arrow instead of pandas then? It depends. Arrow may be faster for some operations, so if

you’re speed-limited, it could be worth switching (or at least testing whether it’s worth it). But on the other

hand, pandas has a healthy userbase, a well-known API, and established interfaces to other tools (e.g. matplotlib

for plotting). The good news is that it’s very easy to convert between pandas DataFrames and arrow Tables, and vice

versa, so it shouldn’t be a problem to try both and see what works best for your use-case.

Writing to disk: feather

We have already seen that we can write tabular data in a columnar format to disk as a parquet file. Another option

is feather. Feather is a direct on-disk representation of the in-memory arrow format - it doesn’t have the same

compression that parquet applies by default.

Let’s write our arrow table to a feather file:

Now we have the same table in csv, parquet, and feather format. Compare the sizes again:

The feather format didn’t compress anywhere near as much as the parquet file (but is still much smaller than csv).

So which is better, feather or parquet? Again, it depends what you are doing. If you will be storing or

transferring large quantities of data, parquet is probably preferable. However, there is a CPU cost to the

compression/decompression, so if you are more worried about the speed of reading and writing files, you might want

to use feather.

10.6 Processing in parallel
Estimated time for this notebook: 30 minutes.

For large datasets, processing in-memory on a single thread might be too slow. There are a few potential options

for processing this data in parallel, some of which we’ll look at very briefly here (we won’t go into any details -

for more information you are recommended to look at the linked documentation).

Batch processing

One option could be to split your dataset into smaller subsets, and use a batch system to run many jobs in parallel

on a cluster or farm of computers. A popular batch job scheduler is Slurm

(https://slurm.schedmd.com/documentation.html) which offers tools for submitting jobs to batch queues, monitoring

their progress, and keeping track of failures. Cloud providers such as Microsoft Azure have their own batch

offerings (e.g. Azure Batch) with similar features.

However, even with tools such as these, there is usually quite a bit of overhead involved in figuring out how to

split up the data, write submission scripts, and keeping track of completed or failed jobs.

MapReduce

MapReduce is a programming model for processing data using a cluster of worker nodes, often on a distributed

filesystem. One such implementation is Apache Hadoop https://hadoop.apache.org/.

pyarrow.Table
Unnamed: 0: int64
date: string
home_team: string
away_team: string
home_score: int64
away_score: int64
tournament: string
city: string
country: string
neutral: bool

Unnamed: 0: [[0,1,2,3,4,...,44055,44056,44057,44058,44059]]
date: [["1872-11-30","1873-03-08","1874-03-07","1875-03-06","1876-03-
04",...,"2022-09-27","2022-09-27","2022-09-27","2022-09-27","2022-09-30"]]
home_team:
[["Scotland","England","Scotland","England","Scotland",...,"Norway","Sweden","Koso
vo","Greece","Fiji"]]
away_team:
[["England","Scotland","England","Scotland","England",...,"Serbia","Slovenia","Cyp
rus","Northern Ireland","Solomon Islands"]]
home_score: [[0,4,2,2,3,...,0,1,5,3,0]]
away_score: [[0,2,1,2,0,...,2,1,1,1,0]]
tournament: [["Friendly","Friendly","Friendly","Friendly","Friendly",...,"UEFA
Nations League","UEFA Nations League","UEFA Nations League","UEFA Nations
League","MSG Prime Minister's Cup"]]
city:
[["Glasgow","London","Glasgow","London","Glasgow",...,"Oslo","Stockholm","Pristina
","Athens","Luganville"]]
country:
[["Scotland","England","Scotland","England","Scotland",...,"Norway","Sweden","Koso
vo","Greece","Vanuatu"]]
neutral: [[false,false,false,false,false,...,false,false,false,false,true]]

ptime = timeit("df.away_score.sum()", globals=globals(), number=10000)
atime = timeit('pc.sum(table.column("away_score"))', globals=globals(),
number=10000)
print(f"Pandas took {ptime}, Arrow took {atime} to sum this column 10k times")

Pandas took 0.48123600099995656, Arrow took 0.10229670100000021 to sum this column
10k times

import pyarrow.feather as feather

feather.write_feather(table, "match_results.feather")

! du -skh match_results.*

3.4M match_results.csv
2.1M match_results.feather
700K match_results.parquet

https://slurm.schedmd.com/documentation.html
https://hadoop.apache.org/

MapReduce consists of three main steps: Map, Shuffle, Reduce, which all operate on key, value pairs. Much of the

possible speedup in a MapReduce workflow is if one is able to send “code-to-data”, i.e. have expensive “map”

operations run on nodes that have fast access to the relevant bit of data.

mapreduce_diagram.png

The canonical (trivial) example of MapReduce is a word-count problem - suppose we have a set of text files and we

want to count the frequency of occurence of each word. We want to be able to parallelize, so that each input could

processed by one node, and the results are brought together at the end in an efficient manner.

First we write a mapper function that takes a single filename as input, and outputs a sorted list of {word:[1]}

dicts:

The next step is to shuffle, bringing together all the items in the mapper output with the same key, so that each

key’s data can be sent to a different reducer.

The reducer in this case is very simple - given a key (which is a word), and a value (which is a list [1,1,1,...])

sum up the values of the list to return a single value.

Of course, this is a simple example, running entirely on our local machine, using for loops and comprehensions. But

it illustrates that for more complex cases, where there is data distributed over different locations, it is

possible to have the “map” stage run in parallel on different machines, and similarly, once the “shuffle” stage has

organized the data by key, it can send the “reduce” stage to be run on different machines in parallel.

Spark

def mapper(input_filename):
 with open(input_filename) as inputfile:
 # split the text on spaces
 words = inputfile.read().split(" ")
 # use list comprehension to output a list of {word: [1]} dicts
 output = [{word.strip(): [1]} for word in sorted(words)]
 return output

mapper("text_sample_0.txt")

[{'best': [1]},
 {'it': [1]},
 {'it': [1]},
 {'of': [1]},
 {'of': [1]},
 {'the': [1]},
 {'the': [1]},
 {'times': [1]},
 {'times': [1]},
 {'was': [1]},
 {'was': [1]},
 {'worst': [1]}]

def shuffler(word_dicts):
 output_dict = {}
 for word_dict in word_dicts:
 for k, v in word_dict.items():
 if not k in output_dict.keys():
 output_dict[k] = []
 output_dict[k] += v
 return [{k: v} for k, v in output_dict.items()]

shuffler(mapper("text_sample_0.txt"))

[{'best': [1]},
 {'it': [1, 1]},
 {'of': [1, 1]},
 {'the': [1, 1]},
 {'times': [1, 1]},
 {'was': [1, 1]},
 {'worst': [1]}]

def reducer(word_dict):
 return {k: sum(v) for k, v in word_dict.items()}

reducer({"best": [1, 1]})

{'best': 2}

Map over each input file, locally on the machine where that file is
input_files = [f"text_sample_{i}.txt" for i in range(7)]
mapped_data = map(mapper, input_files)

Shuffle the data, changing from a distribution where every machine has all the
data
for a single input file, to one in which every machine has all the data for a
single
word. This is the only part that would cause inter-machine data-moving if run on
a
cluster/grid.
First run the shuffler locally on each machine...
shuffle_outputs = [shuffler(md) for md in mapped_data]
... and then again to bring the outputs from the different mapper processes
together.
shuffle_outputs = shuffler(sum(shuffle_outputs, []))

Each machine can then run the reduction operation locally on the data that it
has
post-shuffle. In our case each machine takes care of summing up the subcounts
for
some subset of words.
counts = [reducer(word_dict) for word_dict in shuffle_outputs]
print(counts)

[{'best': 1}, {'it': 10}, {'of': 10}, {'the': 11}, {'times': 2}, {'was': 10},
{'worst': 1}, {'age': 2}, {'foolishness': 1}, {'wisdom': 1}, {'belief': 1},
{'epoch': 2}, {'incredulity': 1}, {'darkness': 1}, {'light': 1}, {'season': 2},
{'despair': 1}, {'hope': 1}, {'spring': 1}, {'winter': 1}, {'before': 2},
{'everything': 1}, {'had': 2}, {'nothing': 1}, {'us': 2}, {'we': 4}, {'all': 2},
{'direct': 2}, {'going': 2}, {'heaven': 1}, {'other': 1}, {'to': 1}, {'way': 1},
{'were': 2}]

One drawback of MapReduce is that is inefficient if the processing dataflow requires multiple passes (e.g. training

a Machine Learning model). This was one of the motivations for the development of Spark https://spark.apache.org/

Spark is based on the concept of a resilient distributed dataset (RDD), a set of read-only data objects distributed

over a cluster. The workflow can be represented as a directed acyclic graph (DAG) with the nodes as the RDDs and

the edges as the operations to be performed on the RDDs. For some types of workflow, Spark is considerably (x100)

quicker than Hadoop/MapReduce, and it can also handle streaming data by making micro-batches and processing them.

The package pyspark https://spark.apache.org/docs/latest/api/python/ provides a Python interface to the Spark API.

However, it does still need a Java runtime environment to work.

Dask

Another option, which is growing in popularity in the academic and scientific communities, is Dask. The idea behind

Dask is to provide a familiar interface to pandas and numpy but to allow the same code to be run either locally or

on a cluster. One of the tricks to facilitate this is “lazy evaluation” - when the code is run, the computation is

not actually performed, but instead a “task graph” is built, where each node represents a Python function that

performs a unit of computation, and the edges represent data dependencies between the upstream and downstream

tasks.

Once the task graph is generated, a “scheduler” (which can be either “single-machine” or “distributed” manages the

workflow by using the task graph to assign tasks to workers in a way that optimizes parallelism while respecting

the data dependencies.

dask_diagram.png (image from Dask documentation https://docs.dask.org/en/stable/)

Dask has a “dataframe”, which can easily be constructed from its pandas equivalent. Let’s use our

“match_results.csv” for input again:

Dask DataFrame Structure:

Unnamed:
0 date home_team away_team home_score away_score tournament city country neutral

npartitions=10

0 int64 object object object int64 int64 object object object bool

4406

...

39654

44059

Dask Name: from_pandas, 1 graph layer

The Dask dataframe has 10 partitions, meaning that the 44k rows in the original csv are now divided into 10 batches

of about 4.4k rows each.

The interface is very similar to pandas, with one important difference. For example, if we want to calculate the

average of the “home_score” column, in pandas we can do:

If we do the same in our Dask dataframe:

Array Chunk

Bytes 8 B 8 B

Shape () ()

Dask graph 1 chunks in 6 graph layers

Data type float64 numpy.ndarray

what we get back is the Task Graph. In order to actually run the calculation, we need to add compute():

Let’s try and do something more complicated. We can use the dataset to investigate whether “home advantage” is

real, in international men’s football matches. We have columns in the dataset for “home_team”, “away_team” etc.,

but some of the matches were at tournaments in neutral territory, so we want to use the “neutral” column to exclude

these. Having done that, we can just calculate the number of matches that the home team won, minus the number that

the home team lost.

import dask.dataframe as dd
import numpy as np
import pandas as pd

df = pd.read_csv("match_results.csv")
ddf = dd.from_pandas(df, npartitions=10)
ddf

ddf.divisions

(0, 4406, 8812, 13218, 17624, 22030, 26436, 30842, 35248, 39654, 44059)

df.home_score.values.mean()

1.7404675442578301

ddf.home_score.values.mean()

ddf.home_score.values.mean().compute()

1.7404675442578301

https://spark.apache.org/
https://spark.apache.org/docs/latest/api/python/
https://docs.dask.org/en/stable/

The Task Graph for this computation, on our dataframe with 10 partitions, looks like this: dask_task_graph.png

Note that you can create this visualization for yourself, if you install the graphviz package (e.g. brew install

graphviz on Mac) then install the Python graphviz package (pip install graphviz), then do result.visualize().

Don’t worry about the details, but we can see the 10 data partitions at the bottom, and the single result at the

top, and a bunch of clever intermediate steps that Dask is figuring out for us.

At this point we can create either a local scheduler, or if we have a handy compute cluster, a distributed

scheduler. Either way, we do this by creating an instance of the dask.distributed.Client class, with the URL of the

scheduler.

There are instructions on setting up a Dask cluster here: https://docs.dask.org/en/stable/deploying.html but for

now, let’s just run on our local machine, with a local scheduler.

Client
Client-a0049a29-2181-11ef-aa63-91152abd2d0a

Connection method: Cluster object Cluster type:
distributed.LocalCluster

Dashboard:
http://127.0.0.1:8787/status

Cluster Info

Note the link to the dashboard - this will provide some diagnostics into what the scheduler is doing.

Once we have created a client, whenever we call compute() it will run on the scheduler that the client points to (in

this case a local scheduler

So, in our dataset, home teams won 8k times more often than away teams, so it seems that home advantage is a real

thing!

10.7 Geospatial data

Estimated time for this notebook: 10 minutes.

Many domains have their own widely-used data file formats, which are optimized for their own most common use-cases.

For example, geospatial datasets will often have some “coordinates” (e.g. Latitude and Longitude, and possibly Time),

and a set of measurements at each point (e.g. Temperature, Humidity, Wind Speed).

Storing such data in a simple table, such as in a parquet or feather file, would be inefficient, as the coordinate

variables would be repeated for each of the measurements.

NetCDF

One binary file format that has been developed for use-cases such as this is netCDF

https://www.unidata.ucar.edu/software/netcdf/ where every file contains metadata describing its contents. Libraries

are available to read and write netCDF files in many programming languages, including Python, R, MATLAB, C++, and

others.

Let’s download an example netCDF file - this one is from the European Centre for Medium-range Weather Forecasting

(ECMWF).

To read this file in Python we can use the netCDF4 package:

def home_team_wins(home_score, away_score, neutral):
 if neutral:
 return 0
 if home_score > away_score: # home win
 return 1
 elif home_score < away_score: # away win
 return -1
 else: # draw
 return 0

ddf["home_win"] = df.apply(
 lambda row: home_team_wins(row["home_score"], row["away_score"],
row["neutral"]),
 axis=1,
)
result = ddf["home_win"].values.sum()

from dask.distributed import Client

client = Client() # or Client("<scheduler URL>") for remote cluster
client

result.compute()

8061

import requests

url = "https://www.unidata.ucar.edu/software/netcdf/examples/ECMWF_ERA-
40_subset.nc"
filename = url.split("/")[-1]
r = requests.get(url, allow_redirects=True)
with open(filename, "wb") as saved_file:
 saved_file.write(r.content)

import netCDF4 as nc

ds = nc.Dataset(filename)
ds

https://docs.dask.org/en/stable/deploying.html
http://127.0.0.1:8787/status
https://www.unidata.ucar.edu/software/netcdf/

We can see that the metadata tells us the “dimensions” (lat, long, time), and “variables” (those, plus lots of

weather-related things that we could look up on https://apps.ecmwf.int/codes/grib/param-db/).

Let’s make a map of “total column ozone” (the amount of ozone from the surface of the Earth to the edge of the

atmosphere) for the first time point in this file (the times here are in “hours since 1/1/1900”).

From the ECMWF parameter database (linked above) we can see that the variable we want for the total column ozone is

“tco3”. We can put the longitude and latitude (which will be our x and y coordinates), and tco3 (which will be the

z coordinate)) into numpy data structures:

A matplotlib contour plot is a simple way of visualizing this.

Pangeo: big data geoscience

NetCDF is a flexible and widely-used format. However, as datasets grow larger, there is increasing demand for tools

to process in parallel (as described in the previous notebook), and on the cloud. Pangeo

(https://pangeo.io/index.html) is a community developing a suite of open source packages, all based on Python, that

aim to provide interoperability between running on a quick study on a local machine, and running over a huge

dataset in the cloud. A major component of this is Dask, which we have already seen, and some others are:

XArray: an xarray.Dataset is an in-memory representation of a netCDF file, while the underlying data structures

can either by numpy arrays, or Dask arrays.

“Cloud native” file formats, such as TileDB and zarr, which can both store N-dimensional arrays with

intelligent chunking for either local or cloud-based access.

Jupyter: interactive notebooks such as Pangeo are a convenient way for users to interact with computing

resources. Ideally, whether the user is running on their local machine, or on a “hub” hosted on the cloud or an

HPC cluster, the user experience, and the code, can be almost exactly the same.

10.x.0 (OPTIONAL): Domain specific languages

Estimated time for this notebook: 25 minutes

Lex and Yacc

Let’s go back to our nice looks-like LaTeX file format:

<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
 Conventions: CF-1.0
 history: 2004-09-15 17:04:29 GMT by mars2netcdf-0.92
 dimensions(sizes): longitude(144), latitude(73), time(62)
 variables(dimensions): float32 longitude(longitude), float32
latitude(latitude), int32 time(time), int16 tcw(time, latitude, longitude), int16
tcwv(time, latitude, longitude), int16 lsp(time, latitude, longitude), int16
cp(time, latitude, longitude), int16 msl(time, latitude, longitude), int16
blh(time, latitude, longitude), int16 tcc(time, latitude, longitude), int16
p10u(time, latitude, longitude), int16 p10v(time, latitude, longitude), int16
p2t(time, latitude, longitude), int16 p2d(time, latitude, longitude), int16
e(time, latitude, longitude), int16 lcc(time, latitude, longitude), int16
mcc(time, latitude, longitude), int16 hcc(time, latitude, longitude), int16
tco3(time, latitude, longitude), int16 tp(time, latitude, longitude)
 groups:

for dim in ds.dimensions.values():
 print(dim)

<class 'netCDF4._netCDF4.Dimension'>: name = 'longitude', size = 144
<class 'netCDF4._netCDF4.Dimension'>: name = 'latitude', size = 73
<class 'netCDF4._netCDF4.Dimension'> (unlimited): name = 'time', size = 62

lats = ds.variables["latitude"][:]
lons = ds.variables["longitude"][:]
tco3 = ds.variables["tco3"][0, :, :]

import matplotlib.pyplot as plt
import numpy as np

plt.set_cmap("cividis") # use a CVD-friendly palette

x, y = np.meshgrid(lons, lats)
plt.contourf(x, y, tco3)
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7fc43db12130>

https://apps.ecmwf.int/codes/grib/param-db/
https://pangeo.io/index.html

%%writefile system.py

class Element:
 def __init__(self, symbol):
 self.symbol = symbol

 def __str__(self):
 return str(self.symbol)

class Molecule:
 def __init__(self):
 self.elements = {} # Map from element to number of that element in the
molecule

 def add_element(self, element, number):
 if not isinstance(element, Element):
 element = Element(element)
 self.elements[element] = number

 @staticmethod
 def as_subscript(number):
 if number == 1:
 return ""
 if number < 10:
 return "_" + str(number)
 return "_{" + str(number) + "}"

 def __str__(self):
 return "".join(
 [
 str(element) + Molecule.as_subscript(self.elements[element])
 for element in self.elements
]
)

class Side:
 def __init__(self):
 self.molecules = {}

 def add(self, reactant, stoichiometry):
 self.molecules[reactant] = stoichiometry

 @staticmethod
 def print_if_not_one(number):
 if number == 1:
 return ""
 else:
 return str(number)

 def __str__(self):
 return " + ".join(
 [
 Side.print_if_not_one(self.molecules[molecule]) + str(molecule)
 for molecule in self.molecules
]
)

class Reaction:
 def __init__(self):
 self.reactants = Side()
 self.products = Side()

 def __str__(self):
 return str(self.reactants) + " \\rightarrow " + str(self.products)

class System:
 def __init__(self):
 self.reactions = []

 def add_reaction(self, reaction):
 self.reactions.append(reaction)

 def __str__(self):
 return "\\\\ \n".join(map(str, self.reactions))

Writing system.py

from system import Element, Molecule, Reaction, System

s2 = System()

c = Element("C")
o = Element("O")
h = Element("H")

co2 = Molecule()
co2.add_element(c, 1)
co2.add_element(o, 2)

h2o = Molecule()
h2o.add_element(h, 2)
h2o.add_element(o, 1)

o2 = Molecule()
o2.add_element(o, 2)

h2 = Molecule()
h2.add_element(h, 2)

glucose = Molecule()
glucose.add_element(c, 6)
glucose.add_element(h, 12)
glucose.add_element(o, 6)

combustion_glucose = Reaction()
combustion_glucose.reactants.add(glucose, 1)
combustion_glucose.reactants.add(o2, 6)
combustion_glucose.products.add(co2, 6)
combustion_glucose.products.add(h2o, 6)
s2.add_reaction(combustion_glucose)

combustion_hydrogen = Reaction()
combustion_hydrogen.reactants.add(h2, 2)
combustion_hydrogen.reactants.add(o2, 1)
combustion_hydrogen.products.add(h2o, 2)
s2.add_reaction(combustion_hydrogen)

print(s2)

How might we write a parser for this? Clearly we’ll encounter the problems we previously solved in ensuring each

molecule is the and atom only gets one object instance, but we solved this by using an appropriate primary key.

(The above implementation is designed to make this easy, learning from the previous lecture.)

But we’ll also run into a bunch of problems which are basically string parsing : noting, for example, that _2 and

_{12} make a number of atoms in a molecule, or that + joins molecules.

This will be very hard to do with straightforward python string processing.

Instead, we will use a tool called ply (Python Lex-Yacc) which contains Lex (for generating lexical analysers) and

Yacc (Yet Another Compiler-Compiler). Together these allow us to define the grammar of our file format.

The theory of “context free grammars” is rich and deep, and we will just scratch the surface here.

Tokenising with Lex

First, we need to turn our file into a “token stream”, using regular expressions to match the kinds of symbol in

our source:

C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O\\
2H_2 + O_2 \rightarrow 2H_2O

from IPython.display import Math, display

display(Math(str(s2)))

C6H12O6 + 6O2 → 6CO2 + 6H2O

2H2 + O2 → 2H2O

%%writefile lexreactions.py

from ply import lex

tokens = (
 "ELEMENT",
 "NUMBER",
 "SUBSCRIPT",
 "LBRACE",
 "RBRACE",
 "PLUS",
 "ARROW",
 "NEWLINE",
 "TEXNEWLINE",
)

Tokens
t_PLUS = r"\+"
t_SUBSCRIPT = r"_"
t_LBRACE = r"\{"
t_RBRACE = r"\}"
t_TEXNEWLINE = r"\\\\"
t_ARROW = r"\\rightarrow"
t_ELEMENT = r"[A-Z][a-z]?"
t_NEWLINE = r"\n+"

def t_NUMBER(t):
 r"\d+"
 t.value = int(t.value)
 return t

t_ignore = " "

def t_error(t):
 print(f"Did not recognise character '{t.value[0]:s}' as part of a valid
token")
 t.lexer.skip(1)

Build the lexer
lexer = lex.lex()

Writing lexreactions.py

from lexreactions import lexer

tokens = []
lexer.input(str(s2))
while True:
 tok = lexer.token()
 if not tok:
 break # No more input
 tokens.append(tok)

print(str(s2))

C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O\\
2H_2 + O_2 \rightarrow 2H_2O

tokens

Note that the parser will reject invalid tokens:

Writing a grammar

So, how do we express our algebra for chemical reactions as a grammar?

We write a series of production rules, expressing how a system is made up of equations, an equation is made up of

molecules etc:

Note how we right that a system is made of more than one equation:

… which implies, recursively, that a system could also be:

This is an incredibly powerful idea. The full grammar for Python 3 can be defined in only a few hundred lines of

specification: https://docs.python.org/3/reference/grammar.html

Parsing with Yacc

A parser defined with Yacc builds up the final object, by breaking down the file according to the rules of the

grammar, and then building up objects as the individual tokens coalesce into the full grammar.

[LexToken(ELEMENT,'C',1,0),
 LexToken(SUBSCRIPT,'_',1,1),
 LexToken(NUMBER,6,1,2),
 LexToken(ELEMENT,'H',1,3),
 LexToken(SUBSCRIPT,'_',1,4),
 LexToken(LBRACE,'{',1,5),
 LexToken(NUMBER,12,1,6),
 LexToken(RBRACE,'}',1,8),
 LexToken(ELEMENT,'O',1,9),
 LexToken(SUBSCRIPT,'_',1,10),
 LexToken(NUMBER,6,1,11),
 LexToken(PLUS,'+',1,13),
 LexToken(NUMBER,6,1,15),
 LexToken(ELEMENT,'O',1,16),
 LexToken(SUBSCRIPT,'_',1,17),
 LexToken(NUMBER,2,1,18),
 LexToken(ARROW,'\\rightarrow',1,20),
 LexToken(NUMBER,6,1,32),
 LexToken(ELEMENT,'C',1,33),
 LexToken(ELEMENT,'O',1,34),
 LexToken(SUBSCRIPT,'_',1,35),
 LexToken(NUMBER,2,1,36),
 LexToken(PLUS,'+',1,38),
 LexToken(NUMBER,6,1,40),
 LexToken(ELEMENT,'H',1,41),
 LexToken(SUBSCRIPT,'_',1,42),
 LexToken(NUMBER,2,1,43),
 LexToken(ELEMENT,'O',1,44),
 LexToken(TEXNEWLINE,'\\\\',1,45),
 LexToken(NEWLINE,'\n',1,48),
 LexToken(NUMBER,2,1,49),
 LexToken(ELEMENT,'H',1,50),
 LexToken(SUBSCRIPT,'_',1,51),
 LexToken(NUMBER,2,1,52),
 LexToken(PLUS,'+',1,54),
 LexToken(ELEMENT,'O',1,56),
 LexToken(SUBSCRIPT,'_',1,57),
 LexToken(NUMBER,2,1,58),
 LexToken(ARROW,'\\rightarrow',1,60),
 LexToken(NUMBER,2,1,72),
 LexToken(ELEMENT,'H',1,73),
 LexToken(SUBSCRIPT,'_',1,74),
 LexToken(NUMBER,2,1,75),
 LexToken(ELEMENT,'O',1,76)]

lexer.input("""2H_2 + O_2 \\leftarrow 2H_2O""")
while True:
 tok = lexer.token()
 if not tok:
 break # No more input
 print(tok)

LexToken(NUMBER,2,1,0)
LexToken(ELEMENT,'H',1,1)
LexToken(SUBSCRIPT,'_',1,2)
LexToken(NUMBER,2,1,3)
LexToken(PLUS,'+',1,5)
LexToken(ELEMENT,'O',1,7)
LexToken(SUBSCRIPT,'_',1,8)
LexToken(NUMBER,2,1,9)
Did not recognise character '\' as part of a valid token
Did not recognise character 'l' as part of a valid token
Did not recognise character 'e' as part of a valid token
Did not recognise character 'f' as part of a valid token
Did not recognise character 't' as part of a valid token
Did not recognise character 'a' as part of a valid token
Did not recognise character 'r' as part of a valid token
Did not recognise character 'r' as part of a valid token
Did not recognise character 'o' as part of a valid token
Did not recognise character 'w' as part of a valid token
LexToken(NUMBER,2,1,22)
LexToken(ELEMENT,'H',1,23)
LexToken(SUBSCRIPT,'_',1,24)
LexToken(NUMBER,2,1,25)
LexToken(ELEMENT,'O',1,26)

system : equation
system : system TEXNEWLINE NEWLINE equation
equation : side ARROW side
side : molecules
molecules : molecule
molecules : NUMBER molecule
side : side PLUS molecules
molecule : countedelement
countedelement : ELEMENT
countedelement : ELEMENT atomcount
molecule : molecule countedelement
atomcount : SUBSCRIPT NUMBER
atomcount : SUBSCRIPT LBRACE NUMBER RBRACE

system : equation # A system could be one equation
system : system NEWLINE equation # Or it could be a system then an equation

system: equation NEWLINE equation NEWLINE equation ...

https://docs.python.org/3/reference/grammar.html

Here, we will for clarity not attempt to solve the problem of having multiple molecule instances for the same

molecule - the normalisation problem solved last lecture.

In Yacc, each grammar rule is defined by a Python function where the docstring for the function contains the

appropriate grammar specification.

Each function accepts an argument p that is a list of symbols in the grammar. It must implement the actions of that

rule. For example:

def p_expression_plus(p):
 'expression : expression PLUS term'
 # ^ ^ ^ ^
 # p[0] p[1] p[2] p[3]
 p[0] = p[1] + p[3]

%%writefile parsereactions.py

Yacc example
import ply.yacc as yacc

Get the components of our system
from system import Element, Molecule, Side, Reaction, System

Get the token map from the lexer. This is required.
from lexreactions import tokens

def p_expression_system(p):
 "system : equation"
 p[0] = System()
 p[0].add_reaction(p[1])

def p_expression_combine_system(p):
 "system : system TEXNEWLINE NEWLINE equation"
 p[0] = p[1]
 p[0].add_reaction(p[4])

def p_equation(p):
 "equation : side ARROW side"
 p[0] = Reaction()
 p[0].reactants = p[1]
 p[0].products = p[3]

def p_side(p):
 "side : molecules"
 p[0] = Side()
 p[0].add(p[1][0], p[1][1])

def p_molecules(p):
 "molecules : molecule"
 p[0] = (p[1], 1)

def p_stoichiometry(p):
 "molecules : NUMBER molecule"
 p[0] = (p[2], p[1])

def p_plus(p):
 "side : side PLUS molecules"
 p[0] = p[1]
 p[0].add(p[3][0], p[3][1])

def p_molecule(p):
 "molecule : countedelement"
 p[0] = Molecule()
 p[0].add_element(p[1][0], p[1][1])

def p_countedelement(p):
 "countedelement : ELEMENT"
 p[0] = (p[1], 1)

def p_ncountedelement(p):
 "countedelement : ELEMENT atomcount"
 p[0] = (p[1], p[2])

def p_multi_element(p):
 "molecule : molecule countedelement"
 p[0] = p[1]
 p[0].add_element(p[2][0], p[2][1])

def p_multi_atoms(p):
 "atomcount : SUBSCRIPT NUMBER"
 p[0] = int(p[2])

def p_many_atoms(p):
 "atomcount : SUBSCRIPT LBRACE NUMBER RBRACE"
 p[0] = int(p[3])

Error rule for syntax errors
def p_error(p):
 print("Syntax error in input!")

Build the parser
parser = yacc.yacc()

Writing parsereactions.py

from parsereactions import parser

roundtrip_system = parser.parse(str(s2))

Generating LALR tables

%%bash
Read the first 100 lines from the file
head -n 100 parser.out

Created by PLY version 3.11 (http://www.dabeaz.com/ply)

Grammar

Rule 0 S' -> system

Rule 1 system -> equation

Rule 2 system -> system TEXNEWLINE NEWLINE equation

Rule 3 equation -> side ARROW side

Rule 4 side -> molecules

Rule 5 molecules -> molecule

Rule 6 molecules -> NUMBER molecule

Rule 7 side -> side PLUS molecules

Rule 8 molecule -> countedelement

Rule 9 countedelement -> ELEMENT

Rule 10 countedelement -> ELEMENT atomcount

Rule 11 molecule -> molecule countedelement

Rule 12 atomcount -> SUBSCRIPT NUMBER

Rule 13 atomcount -> SUBSCRIPT LBRACE NUMBER RBRACE

Terminals, with rules where they appear

ARROW : 3

ELEMENT : 9 10

LBRACE : 13

NEWLINE : 2

NUMBER : 6 12 13

PLUS : 7

RBRACE : 13

SUBSCRIPT : 12 13

TEXNEWLINE : 2

error :

Nonterminals, with rules where they appear

atomcount : 10

countedelement : 8 11

equation : 1 2

molecule : 5 6 11

molecules : 4 7

side : 3 3 7

system : 2 0

Parsing method: LALR

state 0

 (0) S' -> . system

 (1) system -> . equation

 (2) system -> . system TEXNEWLINE NEWLINE equation

 (3) equation -> . side ARROW side

 (4) side -> . molecules

 (7) side -> . side PLUS molecules

 (5) molecules -> . molecule

 (6) molecules -> . NUMBER molecule

 (8) molecule -> . countedelement

 (11) molecule -> . molecule countedelement

 (9) countedelement -> . ELEMENT

 (10) countedelement -> . ELEMENT atomcount

 NUMBER shift and go to state 6

 ELEMENT shift and go to state 8

 system shift and go to state 1

 equation shift and go to state 2

 side shift and go to state 3

 molecules shift and go to state 4

 molecule shift and go to state 5

 countedelement shift and go to state 7

state 1

 (0) S' -> system .

 (2) system -> system . TEXNEWLINE NEWLINE equation

 TEXNEWLINE shift and go to state 9

state 2

Internal DSLs

In doing the above, we have defined what is called an “external DSL”: our code is in Python, but the file format is

a language with a grammar of its own.

However, we can use the language itself to define something almost as fluent, without having to write our own

grammar, by using operator overloading and metaprogramming tricks:

 (1) system -> equation .

 TEXNEWLINE reduce using rule 1 (system -> equation .)

 $end reduce using rule 1 (system -> equation .)

state 3

 (3) equation -> side . ARROW side

 (7) side -> side . PLUS molecules

 ARROW shift and go to state 10

 PLUS shift and go to state 11

state 4

 (4) side -> molecules .

 ARROW reduce using rule 4 (side -> molecules .)

 PLUS reduce using rule 4 (side -> molecules .)

display(Math(str(roundtrip_system)))

C6H12O6 + 6O2 → 6CO2 + 6H2O

2H2 + O2 → 2H2O

with open("system.tex", "w") as texfile:
 texfile.write(str(roundtrip_system))

!cat system.tex

C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O\\
2H_2 + O_2 \rightarrow 2H_2O

%%writefile reactionsdsl.py

class Element:
 def __init__(self, symbol):
 self.symbol = symbol

 def __str__(self):
 return str(self.symbol)

 def __mul__(self, other):
 """Let Molecule handle the multiplication"""
 return (self / 1) * other

 def __truediv__(self, number):
 """`Element / number => Molecule`"""
 res = Molecule()
 res.add_element(self, number)
 return res

class Molecule:
 def __init__(self):
 self.elements = {} # Map from element to number of that element in the
molecule

 def add_element(self, element, number):
 if not isinstance(element, Element):
 element = Element(element)
 self.elements[element] = number

 @staticmethod
 def as_subscript(number):
 if number == 1:
 return ""
 if number < 10:
 return "_" + str(number)
 return "_{" + str(number) + "}"

 def __str__(self):
 return "".join(
 [
 str(element) + Molecule.as_subscript(self.elements[element])
 for element in self.elements
]
)

 def __mul__(self, other):
 """`Molecule * Element => Molecule`
 `Molecule * Molecule => Molecule`
 """
 if type(other) == Molecule:
 self.elements.update(other.elements)
 else:
 self.add_element(other, 1)
 return self

 def __rmul__(self, stoich):
 """`Number * Molecule => Side`"""
 res = Side()
 res.add(self, stoich)
 return res

 def __add__(self, other):
 """`Molecule + X => Side`"""
 if type(other) == Side:
 other.molecules[self] = 1
 return other
 res = Side()
 res.add(self, 1)
 res.add(other, 1)
 return res

class Side:
 def __init__(self):
 self.molecules = {}

 def add(self, reactant, stoichiometry):
 self.molecules[reactant] = stoichiometry

 @staticmethod
 def print_if_not_one(number):
 if number == 1:
 return ""
 else:
 return str(number)

 def __str__(self):
 return " + ".join(
 [
 Side.print_if_not_one(self.molecules[molecule]) + str(molecule)
 for molecule in self.molecules
]
)

 def __add__(self, other):
 """Side + X => Side"""
 self.molecules.update(other.molecules)
 return self

 def __eq__(self, other):
 res = Reaction()
 res.reactants = self
 res.products = other
 current_system.add_reaction(res) # Closure!
 return f"Added: '{res}'"

class Reaction:
 def __init__(self):
 self.reactants = Side()
 self.products = Side()

 def __str__(self):
 return str(self.reactants) + " \\rightarrow " + str(self.products)

class System:
 def __init__(self):
 self.reactions = []

 def add_reaction(self, reaction):
 self.reactions.append(reaction)

 def __str__(self):
 return "\\\\ \n".join(map(str, self.reactions))

current_system = System()

Python is not perfect for this, because it lacks the idea of parenthesis-free function dispatch and other things

that make internal DSLs pretty.

10.x.1 (OPTIONAL): Controlled Vocabularies

Estimated time for this notebook: 15 minutes

Saying the same thing in multiple ways

What happens when someone comes across a file in our file format? How do they know what it means?

If we can make the tag names in our model globally unique, then the meaning of the file can be made understandable

not just to us, but to people and computers all over the world.

Two file formats which give the same information, in different ways, are syntactically distinct, but so long as

they are semantically compatible, I can convert from one to the other.

This is the goal of the technologies introduced this lecture.

The URI

The key concept that underpins these tools is the URI: uniform resource indicator.

These look like URLs:

www.turing.ac.uk/rsd-engineering/schema/reaction/element

But, if I load that as a web address, there’s nothing there!

That’s fine.

A URN indicates a name for an entity, and, by using organisational web addresses as a prefix, is likely to be

unambiguously unique.

A URI might be a URL or a URN, or both.

XML Namespaces

It’s cumbersome to use a full URI every time we want to put a tag in our XML file. XML defines namespaces to

resolve this:

Writing reactionsdsl.py

from reactionsdsl import Element, current_system

Here we add new symbols to the global scope
This is *not* good practice, we do it here to demonstrate that it is possible to
do
for symbol in ("C", "O", "H"):
 globals()[symbol] = Element(symbol)

O / 2 + 2 * (H / 2) == 2 * (H / 2 * O)

"Added: '2H_2 + O_2 \\rightarrow 2H_2O'"

(C / 6) * (H / 12) * (O / 6) + 6 * (O / 2) == 6 * (H / 2 * O) + 6 * (C * (O / 2))

"Added: '6O_2 + C_6H_{12}O_6 \\rightarrow 6H_2O + 6CO_2'"

display(Math(str(current_system)))

2H2 + O2 → 2H2O

6O2 + C6H12O6 → 6H2O + 6CO2

%%writefile system.xml
<?xml version="1.0" encoding="UTF-8"?>
<system xmlns="http://www.turing.ac.uk/rsd-engineering/schema/reaction">
 <reaction>
 <reactants>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 </molecule>
 <molecule stoichiometry="1">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
</system>

Overwriting system.xml

from lxml import etree

with open("system.xml") as xmlfile:
 tree = etree.parse(xmlfile)

print(etree.tostring(tree, pretty_print=True, encoding=str))

Note that our previous XPath query no longer finds anything.

Note the prefix r used to bind the namespace in the query: any string will do - it’s just a dummy variable.

The above file specified our namespace as a default namespace: this is like doing from numpy import * in python.

It’s often better to bind the namespace to a prefix:

Namespaces and Schema

It’s a good idea to serve the schema itself from the URI of the namespace treated as a URL, but it’s not a

requirement: it’s a URN not necessarily a URL!

<system xmlns="http://www.turing.ac.uk/rsd-engineering/schema/reaction">
 <reaction>
 <reactants>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 </molecule>
 <molecule stoichiometry="1">
 <atom symbol="O" number="2"/>
 </molecule>
 </reactants>
 <products>
 <molecule stoichiometry="2">
 <atom symbol="H" number="2"/>
 <atom symbol="O" number="1"/>
 </molecule>
 </products>
 </reaction>
</system>

tree.xpath("//molecule/atom[@number='1']/@symbol")

[]

namespaces = {"r": "http://www.turing.ac.uk/rsd-engineering/schema/reaction"}

tree.xpath("//r:molecule/r:atom[@number='1']/@symbol", namespaces=namespaces)

['O']

%%writefile system.xml
<?xml version="1.0" encoding="UTF-8"?>
<r:system xmlns:r="http://www.turing.ac.uk/rsd-engineering/schema/reaction">
 <r:reaction>
 <r:reactants>
 <r:molecule stoichiometry="2">
 <r:atom symbol="H" number="2"/>
 </r:molecule>
 <r:molecule stoichiometry="1">
 <r:atom symbol="O" number="2"/>
 </r:molecule>
 </r:reactants>
 <r:products>
 <r:molecule stoichiometry="2">
 <r:atom symbol="H" number="2"/>
 <r:atom symbol="O" number="1"/>
 </r:molecule>
 </r:products>
 </r:reaction>
</r:system>

Overwriting system.xml

Note we’re now defining the target namespace for our schema.

Note the power of binding namespaces when using XML files addressing more than one namespace. Here, we can clearly

see which variables are part of the schema defining XML schema itself (bound to xs) and the schema for our file

format (bound to r)

Using standard vocabularies

The work we’ve done so far will enable someone who comes across our file format to track down something about its

significance, by following the URI in the namespace. But it’s still somewhat ambiguous. The word “element” means

(at least) two things: an element tag in an XML document, and a chemical element. (It also means a heating element

in a toaster, and lots of other things.)

To make it easier to not make mistakes as to the meaning of found data, it is helpful to use standardised

namespaces that already exist for the concepts our file format refers to.

So that when somebody else picks up one of our data files, the meaning of the stuff it describes is obvious. In

this example, it would be hard to get it wrong, of course, but in general, defining file formats so that they are

meaningful as found data should be desirable.

For example, the concepts in our file format are already part of the “DBPedia ontology”, among others. So, we could

redesign our file format to exploit this, by referencing for example https://dbpedia.org/ontology/ChemicalCompound:

%%writefile reactions.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.turing.ac.uk/rsd-engineering/schema/reaction"
 xmlns:r="http://www.turing.ac.uk/rsd-engineering/schema/reaction">

<xs:element name="atom">
 <xs:complexType>
 <xs:attribute name="symbol" type="xs:string"/>
 <xs:attribute name="number" type="xs:integer"/>
 </xs:complexType>
</xs:element>

<xs:element name="molecule">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="r:atom" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="stoichiometry" type="xs:integer"/>
 </xs:complexType>
</xs:element>

<xs:element name="reactants">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="r:molecule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="products">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="r:molecule" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="reaction">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="r:reactants"/>
 <xs:element ref="r:products"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="system">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="r:reaction" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

Overwriting reactions.xsd

with open("reactions.xsd") as xsdfile:
 schema_xsd = xsdfile.read()
schema = etree.XMLSchema(etree.XML(schema_xsd))

parser = etree.XMLParser(schema=schema)

with open("system.xml") as xmlfile:
 tree = etree.parse(xmlfile, parser)
 print(tree)

<lxml.etree._ElementTree object at 0x7f9d18c394c0>

https://dbpedia.org/ontology/ChemicalCompound

However, this won’t work properly, because it’s not up to us to define the XML schema for somebody else’s entity

type: and an XML schema can only target one target namespace.

Of course we should use somebody else’s file format for chemical reaction networks: compare SBML for example. We

already know not to reinvent the wheel - and this whole lecture series is just reinventing the wheel for

pedagogical purposes. But what if we’ve already got a bunch of data in our own format. How can we lock down the

meaning of our terms?

So, we instead need to declare that our r:element represents the same concept as dbo:ChemicalElement. To do this

formally we will need the concepts from the next lecture, specifically rdf:sameAs, but first, let’s understand the

idea of an ontology.

Taxonomies and ontologies

An Ontology (in computer science terms) is two things: a controlled vocabulary of entities (a set of URIs in a

namespace), the definitions thereof, and the relationships between them.

People often casually use the word to mean any formalised taxonomy, but the relation of terms in the ontology to

the concepts they represent, and the relationships between them, are also critical.

Have a look at another example: https://dublincore.org/documents/dcmi-terms/

Note each concept is a URI, but some of these are also stated to be subclasses or superclasses of the others.

Some are properties of other things, and the domain and range of these verbs are also stated.

Why is this useful for us in discussing file formats?

One of the goals of the semantic web is to create a way to make file formats which are universally meaningful as

found data: if I have a file format defined using any formalised ontology, then by tracing statements through

rdf:sameAs relationships, I should be able to reconstruct the information I need.

That will be the goal of the next lecture.

10.x.2 (OPTIONAL): Semantic file formats

Estimated time for this notebook: 25 minutes

The dream of a semantic web

So how can we fulfill the dream of a file-format which is self-documenting: universally unambiguous and

interpretable?

(Of course, it might not be true, but we don’t have capacity to discuss how to model reliability and contested

testimony.)

By using URIs to define a controlled vocabulary, we can be unambiguous.

But the number of different concepts to be labelled is huge: so we need a distributed solution: a global structure

of people defining ontologies, (with methods for resolving duplications and inconsistencies.)

Humanity has a technology that can do this: the world wide web. We’ve seen how many different actors are defining

ontologies.

We also need a shared semantic structure for our file formats. XML allows everyone to define their own schema. Our

universal file format requires a restriction to a basic language, which allows us to say the things we need:

The Triple

We can then use these defined terms to specify facts, using a URI for the subject, verb, and object of our

sentence.

%%writefile chemistry_template3.mko
<?xml version="1.0" encoding="UTF-8"?>
<system xmlns="https://www.turing.ac.uk/rsd-engineering/schema/reaction"
 xmlns:dbo="https://dbpedia.org/ontology/">
%for reaction in reactions:
 <reaction>
 <reactants>
 %for molecule in reaction.reactants.molecules:
 <dbo:ChemicalCompound
stoichiometry="${reaction.reactants.molecules[molecule]}">
 %for element in molecule.elements:
 <dbo:ChemicalElement symbol="${element.symbol}"
 number="${molecule.elements[element]}"/>
 %endfor
 </dbo:ChemicalCompound>
 %endfor
 </reactants>
 <products>
 %for molecule in reaction.products.molecules:
 <dbo:ChemicalCompound
stoichiometry="${reaction.products.molecules[molecule]}">
 %for element in molecule.elements:
 <dbo:ChemicalElement symbol="${element.symbol}"
 number="${molecule.elements[element]}"/>
 %endfor
 </dbo:ChemicalCompound>
 %endfor
 </products>
 </reaction>
%endfor
</system>

Writing chemistry_template3.mko

%%writefile reaction.ttl

<http://dbpedia.org/ontology/water>
 <http://purl.obolibrary.org/obo/PATO_0001681>
 "18.01528"^^<http://purl.obolibrary.org/obo/UO_0000088>
 .

http://sbml.org/
https://dublincore.org/documents/dcmi-terms/#terms-creator

Water

Molar mass

Grams per mole

This is an unambiguous statement, consisting of a subject, a verb, and an object, each of which is either a URI or

a literal value. Here, the object is a literal with a type.

RDF file formats

We have used the RDF (Resource Description Framework) semantic format, in its “Turtle” syntactic form:

We can parse it:

The equivalent in RDF-XML is:

We can also use namespace prefixes in Turtle:

Normal forms and Triples

How do we encode the sentence “water has two hydrogen atoms” in RDF?

See Defining N-ary Relations on the Semantic Web for the definitive story.

I’m not going to search carefully here for existing ontologies for the relationships we need: later we will

understand how to define these as being the same as or subclasses of concepts in other ontologies. That’s part of

the value of a distributed approach: we can define what we need, and because the Semantic Web tools make rigorous

the concepts of rdfs:sameAs and rdfs:subclassOf this will be OK.

However, there’s a problem. We can do:

ElementalHydrogen

We’ve introduced the semicolon in Turtle to say two statements about the same entity. The equivalent RDF-XML is:

Writing reaction.ttl

subject verb object .
subject2 verb2 object2 .

from rdflib import Graph

graph = Graph()
graph.parse("reaction.ttl", format="ttl")

print(len(graph))

for statement in graph:
 print(statement)

1
(rdflib.term.URIRef('http://dbpedia.org/ontology/water'),
rdflib.term.URIRef('http://purl.obolibrary.org/obo/PATO_0001681'),
rdflib.term.Literal('18.01528',
datatype=rdflib.term.URIRef('http://purl.obolibrary.org/obo/UO_0000088')))

print(graph.serialize(format="xml"))

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:ns1="http://purl.obolibrary.org/obo/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <rdf:Description rdf:about="http://dbpedia.org/ontology/water">
 <ns1:PATO_0001681
rdf:datatype="http://purl.obolibrary.org/obo/UO_0000088">18.01528</ns1:PATO_000168
1>
 </rdf:Description>
</rdf:RDF>

print(graph.serialize(format="ttl"))

@prefix ns1: <http://purl.obolibrary.org/obo/> .

<http://dbpedia.org/ontology/water> ns1:PATO_0001681 "18.01528"^^ns1:UO_0000088 .

%%writefile reaction.ttl

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .

dbo:water obo:PATO_0001681 "18.01528"^^obo:UO_0000088 ;
 disr:containsElement obo:CHEBI_33260 .

Overwriting reaction.ttl

graph = Graph()
graph.parse("reaction.ttl", format="ttl")
print(len(graph))
print(graph.serialize(format="xml"))

http://dbpedia.org/ontology/water
http://purl.obolibrary.org/obo/PATO_0001681
http://purl.obolibrary.org/obo/UO_0000088
https://www.w3.org/TR/swbp-n-aryRelations/
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:33260

However, we can’t express hasTwo in this way without making an infinite number of properties!

RDF doesn’t have a concept of adverbs. Why not?

It turns out there’s a fundamental relationship between the RDF triple and a RELATION in the relational database

model.

The subject corresponds to the relational primary key.

The verb (RDF “property”) corresponds to the relational column name.

The object corresponds to the value in the corresponding column.

We already found out that to model the relationship of atoms to molecules we needed a join table, and the number of

atoms was metadata on the join.

So, we need an entity type (RDF class) which describes an ElementInMolecule.

Fortunately, we don’t have to create a universal URI for every single relationship, thanks to RDF’s concept of an

anonymous entity: something which is uniquely defined by its relationships.

Imagine if we had to make a URN for oxygen-in-water, hydrogen-in-water etc!

Here we have used [] to indicate an anonymous entity, with no subject. We then define two predicates on that

subject, using properties corresponding to our column names in the join table.

Another turtle syntax for an anonymous “blank node” is this:

Serialising to RDF

Here’s code to write our model to Turtle:

2
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:disr="http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/"
 xmlns:obo="http://purl.obolibrary.org/obo/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <rdf:Description rdf:about="http://dbpedia.org/ontology/water">
 <obo:PATO_0001681
rdf:datatype="http://purl.obolibrary.org/obo/UO_0000088">18.01528</obo:PATO_000168
1>
 <disr:containsElement
rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33260"/>
 </rdf:Description>
</rdf:RDF>

%%writefile reaction.ttl

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .

dbo:water obo:PATO_0001681 "18.01528"^^obo:UO_0000088 ;
 disr:containsElement obo:CHEBI_33260 ;
 disr:hasElementQuantity [
 disr:countedElement obo:CHEBI_33260 ;
 disr:countOfElement "2"^^xs:integer
] .

Overwriting reaction.ttl

%%writefile reaction.ttl

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .

dbo:water obo:PATO_0001681 "18.01528"^^obo:UO_0000088 ;
 disr:containsElement obo:CHEBI_33260 ;
 disr:hasElementQuantity _:a .

_:a disr:countedElement obo:CHEBI_33260 ;
 disr:countOfElement "2"^^xs:integer .

Overwriting reaction.ttl

“a” in Turtle is an always available abbreviation for https://www.w3.org/1999/02/22-rdf-syntax-ns#type

We’ve also used:

Molecular entity

Elemental molecular entity

I’ve skipped serialising the stoichiometries: to do that correctly I also need to create a relationship class for

molecule-in-reaction.

And we’ve not attempted to relate our elements to their formal definitions, since our model isn’t recording this at

the moment. We could add this statement later.

%%writefile chemistry_turtle_template.mko

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .

[
%for reaction in reactions:
 disr:hasReaction [
 %for molecule in reaction.reactants.molecules:
 disr:hasReactant [
 %for element in molecule.elements:
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "${element.symbol}"^^xs:string
] ;
 disr:countOfElement
"${molecule.elements[element]}"^^xs:integer
];
 %endfor
 a obo:CHEBI_23367
] ;
 %endfor
 %for molecule in reaction.products.molecules:
 disr:hasProduct [
 %for element in molecule.elements:
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "${element.symbol}"^^xs:string
] ;
 disr:countOfElement
"${molecule.elements[element]}"^^xs:integer
] ;
 %endfor
 a obo:CHEBI_23367
] ;
 %endfor
 a disr:reaction
] ;
%endfor
a disr:system
].

Writing chemistry_turtle_template.mko

from IPython.display import Math, display
from parsereactions import parser

with open("system.tex", "r") as texfile:
 system = parser.parse(texfile.read())
display(Math(str(system)))

C6H12O6 + 6O2 → 6CO2 + 6H2O

2H2 + O2 → 2H2O

from mako.template import Template

mytemplate = Template(filename="chemistry_turtle_template.mko")
with open("system.ttl", "w") as ttlfile:
 ttlfile.write((mytemplate.render(**vars(system))))

!cat system.ttl

https://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A23367
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A33259

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .

[
 disr:hasReaction [
 disr:hasReactant [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "C"^^xs:string
] ;
 disr:countOfElement "6"^^xs:integer
];
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "H"^^xs:string
] ;
 disr:countOfElement "12"^^xs:integer
];
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "O"^^xs:string
] ;
 disr:countOfElement "6"^^xs:integer
];
 a obo:CHEBI_23367
] ;
 disr:hasReactant [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "O"^^xs:string
] ;
 disr:countOfElement "2"^^xs:integer
];
 a obo:CHEBI_23367
] ;
 disr:hasProduct [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "C"^^xs:string
] ;
 disr:countOfElement "1"^^xs:integer
] ;
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "O"^^xs:string
] ;
 disr:countOfElement "2"^^xs:integer
] ;
 a obo:CHEBI_23367
] ;
 disr:hasProduct [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "H"^^xs:string
] ;
 disr:countOfElement "2"^^xs:integer
] ;
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "O"^^xs:string
] ;
 disr:countOfElement "1"^^xs:integer
] ;
 a obo:CHEBI_23367
] ;
 a disr:reaction
] ;
 disr:hasReaction [
 disr:hasReactant [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "H"^^xs:string
] ;
 disr:countOfElement "2"^^xs:integer
];
 a obo:CHEBI_23367
] ;
 disr:hasReactant [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "O"^^xs:string
] ;
 disr:countOfElement "2"^^xs:integer
];
 a obo:CHEBI_23367
] ;
 disr:hasProduct [
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "H"^^xs:string
] ;
 disr:countOfElement "2"^^xs:integer
] ;
 disr:hasElementQuantity [
 disr:countedElement [
 a obo:CHEBI_33259;
 disr:symbol "O"^^xs:string
] ;
 disr:countOfElement "1"^^xs:integer
] ;
 a obo:CHEBI_23367
] ;
 a disr:reaction
] ;
a disr:system
].

graph = Graph()
graph.parse("system.ttl", format="ttl")
print(graph.serialize(format="xml"))

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:disr="http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>

 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb2">
 <disr:hasReactant rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb3"/>
 <disr:hasReactant rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb10"/>
 <disr:hasProduct rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb13"/>
 <disr:hasProduct rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb18"/>
 <rdf:type rdf:resource="http://www.turing.ac.uk/rsd-
engineering/ontologies/reactions/reaction"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb13">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb14"/>
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb16"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb28">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb29"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">2</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb5">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">C</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb26">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">H</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb4">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb5"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">6</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb32">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">H</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb23">
 <disr:hasReactant rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb24"/>
 <disr:hasReactant rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb27"/>
 <disr:hasProduct rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb30"/>
 <rdf:type rdf:resource="http://www.turing.ac.uk/rsd-
engineering/ontologies/reactions/reaction"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb19">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb20"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">2</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb10">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb11"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb1">
 <disr:hasReaction rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb2"/>
 <disr:hasReaction rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb23"/>
 <rdf:type rdf:resource="http://www.turing.ac.uk/rsd-
engineering/ontologies/reactions/system"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb14">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb15"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">1</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb25">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb26"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">2</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb31">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb32"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">2</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb20">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">H</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb15">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">C</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb33">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb34"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">1</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb18">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb19"/>
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb21"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb21">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb22"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">1</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb16">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb17"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">2</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb11">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb12"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">2</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb24">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb25"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb3">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb4"/>
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb6"/>
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb8"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb6">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb7"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">12</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb17">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">O</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb9">

We can see why the group of triples is called a graph: each node is an entity and each arc a property relating

entities.

Note that this format is very very verbose. It is not designed to be a nice human-readable format.

Instead, the purpose is to maximise the capability of machines to reason with found data.

Formalising our ontology: RDFS

Our http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/ namespace now contains the following properties:

disr:hasReaction

disr:hasReactant

disr:hasProduct

disr:containsElement

disr:countedElement

disr:hasElementQuantity

disr:countOfElement

disr:symbol

And two classes:

disr:system

disr:reaction

We would now like to find a way to formally specify some of the relationships between these.

The type (http://www.w3.org/1999/02/22-rdf-syntax-ns#type or a) of the subject of hasReaction must be disr:system.

RDFS will allow us to specify which URNs define classes and which properties, and the domain and range (valid

subjects and objects) of our properties.

For example:

This will allow us to make our file format briefer: given this schema, if

_:a hasReaction _:b

then we can infer that

_:a a disr:system . _:b a disr:reaction .

without explicitly stating it.

Obviously there’s a lot more to do to define our other classes, including defining a class for our anonymous

element-in-molecule nodes.

This can get very interesting:

 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">O</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb34">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">O</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb29">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">O</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb30">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb31"/>
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb33"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb7">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">H</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb27">
 <disr:hasElementQuantity rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb28"/>
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_23367"/>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb8">
 <disr:countedElement rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb9"/>
 <disr:countOfElement
rdf:datatype="http://www.w3.org/2001/XMLSchemainteger">6</disr:countOfElement>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb12">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">O</disr:symbol>
 </rdf:Description>
 <rdf:Description rdf:nodeID="nf589d2eca68a42c19475f04e5f89a17bb22">
 <rdf:type rdf:resource="http://purl.obolibrary.org/obo/CHEBI_33259"/>
 <disr:symbol
rdf:datatype="http://www.w3.org/2001/XMLSchemastring">O</disr:symbol>
 </rdf:Description>
</rdf:RDF>

%%writefile turing_ontology.ttl

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

disr:system a rdfs:Class .
disr:reaction a rdfs:Class .
disr:hasReaction a rdf:Property .
disr:hasReaction rdfs:domain disr:system .
disr:hasReaction rdfs:range disr:reaction .

Writing turing_ontology.ttl

http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/
https://www.w3.org/TR/rdf-schema/

OWL extends RDFS even further.

Inferring additional rules from existing rules and schema is very powerful: an interesting branch of AI.

(Unfortunately the python tool for doing this automatically is currently not updated to python 3 so I’m not going

to demo it. Instead, we’ll see in a moment how to apply inferences to our graph to introduce new properties.)

SPARQL

So, once I’ve got a bunch of triples, how do I learn anything at all from them? The language is so verbose it seems

useless!

SPARQL is a very powerful language for asking questions of knowledge bases defined in RDF triples:

We can see how this works: you make a number of statements in triple-form, but with some quantities as dummy-

variables. SPARQL finds all possible subgraphs of the triple graph which are compatible with the statements in your

query.

We can also use SPARQL to specify inference rules:

Exercise for reader: express “If x is the subject of a hasReaction relationship, then x must be a system” in

SPARQL.

Exercise for reader: search for a SPARQL endpoint knowledge base in your domain.

%%writefile turing_ontology.ttl

@prefix disr: <http://www.turing.ac.uk/rsd-engineering/ontologies/reactions/> .
@prefix obo: <http://purl.obolibrary.org/obo/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

disr:system a rdfs:Class .
disr:reaction a rdfs:Class .
disr:hasReaction a rdf:Property .
disr:hasReaction rdfs:domain disr:system .
disr:hasReaction rdfs:range disr:reaction .

disr:hasParticipant a rdf:Property .
disr:hasReactant rdfs:subPropertyOf disr:hasParticipant .
disr:hasProduct rdfs:subPropertyOf disr:hasParticipant

Overwriting turing_ontology.ttl

results = graph.query(
 """
 SELECT DISTINCT ?asymbol ?bsymbol
 WHERE {
 ?molecule disr:hasElementQuantity ?a .
 ?a disr:countedElement ?elementa .
 ?elementa disr:symbol ?asymbol .
 ?molecule disr:hasElementQuantity ?b .
 ?b disr:countedElement ?elementb .
 ?elementb disr:symbol ?bsymbol
 }
 """
)

for row in results:
 print(f"Elements {row[0]} and %s are found in the same molecule" % row)

TypeError Traceback (most recent call last)
Cell In[16], line 16
 1 results = graph.query(
 2 """
 3 SELECT DISTINCT ?asymbol ?bsymbol
 (...)
 12 """
 13)
 15 for row in results:
---> 16 print(f"Elements {row[0]} and %s are found in the same molecule" %
row)

TypeError: not all arguments converted during string formatting

graph.update(
 """
 INSERT { ?elementa disr:inMoleculeWith ?elementb }
 WHERE {
 ?molecule disr:hasElementQuantity ?a .
 ?a disr:countedElement ?elementa .
 ?elementa disr:symbol ?asymbol .
 ?molecule disr:hasElementQuantity ?b .
 ?b disr:countedElement ?elementb .
 ?elementb disr:symbol ?bsymbol
 }
 """
)

graph.query(
 """
 SELECT DISTINCT ?asymbol ?bsymbol
 WHERE {
 ?elementa disr:inMoleculeWith ?elementb .
 ?elementa disr:symbol ?asymbol .
 ?elementb disr:symbol ?bsymbol
 }
 """
)

for row in results:
 print(f"Elements {row[0]} and {row[1]} are found in the same molecule")

Elements C and C are found in the same molecule
Elements C and H are found in the same molecule
Elements C and O are found in the same molecule
Elements H and C are found in the same molecule
Elements H and H are found in the same molecule
Elements H and O are found in the same molecule
Elements O and C are found in the same molecule
Elements O and H are found in the same molecule
Elements O and O are found in the same molecule

https://www.w3.org/TR/owl-ref/
https://github.com/RDFLib/OWL-RL

Connect to it using Python RDFLib’s SPARQL endpoint wrapper and ask it a question.

Exercise Solutions
We’ve provided sample solutions for the exercises in each module. They’re sample solutions because a lot of the

exercises could be implemented in different ways and don’t have a single correct answer. It’s up to you how you use

the solutions, but it’s always best to attempt the exercises yourself first.

Module 1

Exercise 1a

Exercise 1b

A note about sorted and sort.

returns a new list that is sorted

modifies the original list. If we look at their positions in memory we can verify this:

import draw_infinity
image = draw_infinity.make_figure()

#What is 2 to the power 15?
import math as m

print(2**15)
print(m.pow(2,15))
print("-----------")

#Convert `"It was the best of times"` to uppercase.
target = "It was the best of times"
print(target.upper())
print("It was the best of times".upper())
print("-----------")

#Sort the list `[10, 9, 0, 20, 8, 2, 30, 7, 3]`.
target = [10, 9, 0, 20, 8, 2, 30, 7, 3]
print(sorted(target)) # Returns a new list that is sorted
target.sort() # N/B .sort() modifes the original list
print(target)
print("-----------")

#What is 100! ? (That is, what is the factorial of 100?) Hint: the `factorial`
function is in the `math` library m
print(m.factorial(100))

Could do it my hand too but there are functions to do it in the math (and other)
libraries
answer = 1
for i in range(1, 100):
 answer *= i

print(answer)

32768
32768.0

IT WAS THE BEST OF TIMES
IT WAS THE BEST OF TIMES

[0, 2, 3, 7, 8, 9, 10, 20, 30]
[0, 2, 3, 7, 8, 9, 10, 20, 30]

9332621544394415268169923885626670049071596826438162146859296389521759999322991560
8941463976156518286253697920827223758251185210916864000000000000000000000000
9332621544394415268169923885626670049071596826438162146859296389521759999322991560
89414639761565182862536979208272237582511852109168640000000000000000000000

sorted(target)

target.sort()

https://github.com/RDFLib/sparqlwrapper

We can see that the example list is in the same place as it was before, but now it is sorted

Exercise 1c

Exercise 1d

Something with a similar structure to this:

Some important points about this particular solution:

The whole solution is a single nested structure.

Indentation is used to make the structure easier to read.

Python allows code to continue over multiple lines, so long as sets of brackets are not finished.

There is an empty person list in empty rooms, so the type structure is robust to potential movements of people.

We are nesting dictionaries and lists, with string and integer data.

Exercise 1e

We can count the occupants and capacity like this:

As a side note, note how we included the values of capacity and occupancy in the last line. This is a handy syntax

for building strings that contain the values of variables. You can read more about it here or in the official

documentation for formatted string literals; f-strings.

Module 02

Exercise 2a/b

example_list = [3, 8, 1, 0, 5, 8, 9, 1, 1, 5]
print(f"Example list = {example_list}")
print(hex(id(example_list))) # Where the example list is stored
print("")
new_list = sorted(example_list)
print(f"New list = {new_list}")
print(hex(id(new_list))) # Where the new list is stored
print(f"Example list = {example_list}")
print(hex(id(example_list))) # Where the example list is stored
print("")
example_list.sort()
print(f"Example list = {example_list}")
print(hex(id(example_list))) # Where the (sorted) example list is stored

Example list = [3, 8, 1, 0, 5, 8, 9, 1, 1, 5]
0x7f71d4c4fa80

New list = [0, 1, 1, 1, 3, 5, 5, 8, 8, 9]
0x7f71d4c4fd80
Example list = [3, 8, 1, 0, 5, 8, 9, 1, 1, 5]
0x7f71d4c4fa80

Example list = [0, 1, 1, 1, 3, 5, 5, 8, 8, 9]
0x7f71d4c4fa80

Which of the operators `+`, `-`, `*`, and `/` do something useful with the lists
`[1, 10, 100]` and `[5, 4, 7]`?
a = [1, 10, 100]
b = [5, 4, 7]
print(a+b)
all others not allowed
print("")

What happens if you apply the operators `+`, `-`, `*`, `/` to a list and a
number?
c = [1, 2, 3, 4, 'five']
d = 2
print(c*d)
all others not allowed
print("")

What about a string and a string?
e = "string-1"
f = "string-2"
print(e + f)
all others not allowed

[1, 10, 100, 5, 4, 7]

[1, 2, 3, 4, 'five', 1, 2, 3, 4, 'five']

string-1string-2

house = {
 "living": {
 "exits": {"north": "kitchen", "outside": "garden", "upstairs": "bedroom"},
 "people": ["James"],
 "capacity": 2,
 },
 "kitchen": {"exits": {"south": "living"}, "people": [], "capacity": 1},
 "garden": {"exits": {"inside": "living"}, "people": ["Sue"], "capacity": 3},
 "bedroom": {
 "exits": {"downstairs": "living", "jump": "garden"},
 "people": [],
 "capacity": 1,
 },
}

capacity = 0
occupancy = 0
for name, room in house.items():
 capacity += room["capacity"]
 occupancy += len(room["people"])
print(f"House can fit {capacity} people, and currently has: {occupancy}.")

House can fit 7 people, and currently has: 2.

https://realpython.com/python-string-formatting/#3-string-interpolation-f-strings-python-36
https://docs.python.org/3/tutorial/inputoutput.html#tut-f-strings

Answer 2a

We can get a simpler dictionary with just capacities like this:

Answer 2b

To get the current number of occupants, we can use a similar dictionary comprehension. Remember that we can filter

(only keep certain rooms) by adding an if clause:

Answer 2c

Things to notice here:

1.99999 doesn’t round, even if you did int(1.9999999) you would get 1.

round(1.9999999) or int(1.9999999999999999) would give you 2

Strings aren’t integers

Even though 20 and 5 are integers and they divide to give 4, the result is a float, not an int. Floor division (20

// 5) will return an integer.

‘10.’ is a float not an integer

Can do this in one line using comprehension or could make an empty list and append to it.

Answer 2d

After importing the libraries you can use dir(X) to list the attributes of each module

There will be some depreciation warnings from scipy instructing users to use numpy or numpy.lib (which can also be

investigated via dir(numpy.lib)

pi: Use numpy.pi, scipy.pi, math.pi. statistics has tau but not pi.

log: Use numpy.log10, scipy.log10, math.log10. statistics has log but not log10: log(n)/log(10) can be used instead.

For log(+ive) we use +12.01 as an example while for log(-ive) we use -11.99 as an example.

Module pi log(+ive) log(-ive) mean

numpy 3.14159… 1.07954… nan 5.0

scipy 3.14159… 1.07954… (1.07881…+1.36437…j) 5.0

math 3.14159… 1.07954… math domain error n/a

statistics n/a 1.07954… math domain error 5

All libraries return the same value of pi. All libraries return the same value of log(+ive). scipy returns a

complex number for the negative log example while all others produce an error.

statistics returns the mean as an integer whereas numpy and scipy return a float.

Answer 2e

Broad range of options, this is simply one of the possibilities given in the original notebook with the inclusion

of some typehinting and descriptions of methods/classes

Note. For more information on type annotations, look into Module 7.2

house = {
 "living": {
 "exits": {"north": "kitchen", "outside": "garden", "upstairs": "bedroom"},
 "people": ["James"],
 "capacity": 2,
 },
 "kitchen": {"exits": {"south": "living"}, "people": [], "capacity": 1},
 "garden": {"exits": {"inside": "living"}, "people": ["Sue"], "capacity": 3},
 "bedroom": {
 "exits": {"downstairs": "living", "jump": "garden"},
 "people": [],
 "capacity": 1,
 },
}

{name: room['capacity'] for name, room in house.items()}

{'living': 2, 'kitchen': 1, 'garden': 3, 'bedroom': 1}

{name: len(room["people"]) for name, room in house.items() if len(room["people"])
> 0}

{'living': 1, 'garden': 1}

def example_funct(*args):
 op = [a for a in args if type(a)== int and a%2 == 0]
 return op

example_funct(1, 1.99999999999, "three", 20/5, 5, 6, "sju", "8", 9, 10., 11, 12)

[6, 12]

https://alan-turing-institute.github.io/rse-course/html/module07_construction_and_design/07_02_coding_conventions.html#type-annotations

import typing
class Maze:
 """
 Here we can put a description of the class
 """
 def __init__(self, name: str):
 # We can also use typehints to signal what type a variable should be
 # In this case the name of the maze would be a string.
 self.name = name
 self.rooms = {}

 def add_room(self, room):
 room.maze = self # The Room needs to know which Maze it is a part of
 self.rooms[room.name] = room # This means that we expect our Rooms class
to have a 'name' property

 def occupants(self):
 """
 Return a list containing the occupants of the maze
 """
 return [occupant for room in self.rooms.values() for occupant in
room.occupants.values()]

 def wander(self):
 """Move all the people in a random direction"""
 for occupant in self.occupants():
 occupant.wander()

 def describe(self):
 for room in self.rooms.values():
 room.describe()

 def step(self):
 self.describe()
 print("")
 self.wander()
 print("")

 def simulate(self, steps):
 for _ in range(steps):
 self.step()

class Room:
 def __init__(self, name: str, exits: dict, capacity: int, maze=None):
 self.maze = maze
 self.name = name
 self.occupants = {} # Note the default argument, occupants start empty
 self.exits = exits # Should be a dictionary from directions to room names
 self.capacity = capacity

 def has_space(self) -> bool:
 """
 Check if the room has space and return a boolean (True/False)
 """
 return len(self.occupants) < self.capacity

 def available_exits(self) -> typing.List[str]:
 return [
 exit
 for exit, target in self.exits.items()
 if self.maze.rooms[target].has_space()
]

 def random_valid_exit(self):
 import random

 if not self.available_exits():
 return None
 return random.choice(self.available_exits())

 def destination(self, exit):
 return self.maze.rooms[self.exits[exit]]

 def add_occupant(self, occupant):
 occupant.room = self # The person needs to know which room it is in
 self.occupants[occupant.name] = occupant

 def delete_occupant(self, occupant):
 del self.occupants[occupant.name]

 def describe(self):
 if self.occupants:
 print(f"{self.name}: " + " ".join(self.occupants.keys()))

class Person:
 def __init__(self, name: str, room=None):
 self.name = name

 def use(self, exit):
 self.room.delete_occupant(self)
 destination = self.room.destination(exit)
 destination.add_occupant(self)
 print(
 "{some} goes {action} to the {where}".format(
 some=self.name, action=exit, where=destination.name
)
)

 def wander(self):
 exit = self.room.random_valid_exit()
 if exit:
 self.use(exit)

james = Person("James")
sue = Person("Sue")
bob = Person("Bob")
clare = Person("Clare")

living = Room("livingroom", {"outside": "garden", "upstairs": "bedroom", "north":
"kitchen"}, 2)
kitchen = Room("kitchen", {"south": "livingroom"}, 1)
garden = Room("garden", {"inside": "livingroom"}, 3)
bedroom = Room("bedroom", {"jump": "garden", "downstairs": "livingroom"}, 1)

house = Maze("My House")

for room in [living, kitchen, garden, bedroom]:
 house.add_room(room)

living.add_occupant(james)
garden.add_occupant(sue)
garden.add_occupant(clare)
bedroom.add_occupant(bob)

Answer 2f

Something along the lines of this for the original question:

Answer 2e

house.simulate(3)

livingroom: James
garden: Sue Clare
bedroom: Bob

James goes outside to the garden
Sue goes inside to the livingroom
Clare goes inside to the livingroom
Bob goes jump to the garden

livingroom: Sue Clare
garden: James Bob

Sue goes outside to the garden
Clare goes north to the kitchen
James goes inside to the livingroom
Bob goes inside to the livingroom

livingroom: James Bob
kitchen: Clare
garden: Sue

James goes upstairs to the bedroom
Bob goes outside to the garden
Clare goes south to the livingroom
Sue goes inside to the livingroom

import requests
from IPython.display import Image

coordinates_as_lat_lon = [(36.2110,-115.2669),
 (53.0066, 7.1920),
 (41.3908, 2.1631),
 (40.7822, -73.9653),
 (25.8380, 50.6050)]

def op_response(lat, lon):
 response = requests.get(
 "https://static-maps.yandex.ru:443/1.x",
 params={
 "size": "400,400", # size of map
 "ll": str(lon) + "," + str(lat), # longitude & latitude of centre
 "z": 12, # zoom level
 "l": "sat", # map layer (satellite image)
 "lang": "en_US", # language
 },
)
 return response.content

op = op_response(*coordinates_as_lat_lon[4])

Image(op)

def extended_op_response(lat, lon, zoom=15, opfname="tmp.png"):

 response = requests.get(
 "https://static-maps.yandex.ru:443/1.x",
 params={
 "size": "400,400", # size of map
 "ll": str(lon) + "," + str(lat), # longitude & latitude of centre
 "z": zoom, # zoom level
 "l": "sat", # map layer (satellite image)
 "lang": "en_US", # language
 },
)

 with open(opfname, "wb") as png:
 png.write(response.content)

extended_op_response(*coordinates_as_lat_lon[1], zoom=16,
opfname="map_picture_1.png")

Image("map_picture_1.png")

Module 03

Exercise 3a Saving and loading data

Relevant sections: 3.1.2, 3.1.3

Use YAML or JSON to save your maze data structure to disk and load it again.

The maze would have looked something like this:

Exercise 3a Answer

Save as JSON or YAML

house = {
 "living": {
 "exits": {"north": "kitchen", "outside": "garden", "upstairs": "bedroom"},
 "people": ["James"],
 "capacity": 2,
 },
 "kitchen": {"exits": {"south": "living"}, "people": [], "capacity": 1},
 "garden": {"exits": {"inside": "living"}, "people": ["Sue"], "capacity": 3},
 "bedroom": {
 "exits": {"downstairs": "living", "jump": "garden"},
 "people": [],
 "capacity": 1,
 },
}

import json
import yaml

Write with json.dump
with open("myfile.json", "w") as f:
 json.dump(house, f)

Look at the file on disk
!cat myfile.json

{"living": {"exits": {"north": "kitchen", "outside": "garden", "upstairs":
"bedroom"}, "people": ["James"], "capacity": 2}, "kitchen": {"exits": {"south":
"living"}, "people": [], "capacity": 1}, "garden": {"exits": {"inside": "living"},
"people": ["Sue"], "capacity": 3}, "bedroom": {"exits": {"downstairs": "living",
"jump": "garden"}, "people": [], "capacity": 1}}

Or with file.write, using json.dumps to convert to a string
with open("myotherfile.json", "w") as json_maze_out:
 json_maze_out.write(json.dumps(house))

Look at the file on disk
!cat myotherfile.json

{"living": {"exits": {"north": "kitchen", "outside": "garden", "upstairs":
"bedroom"}, "people": ["James"], "capacity": 2}, "kitchen": {"exits": {"south":
"living"}, "people": [], "capacity": 1}, "garden": {"exits": {"inside": "living"},
"people": ["Sue"], "capacity": 3}, "bedroom": {"exits": {"downstairs": "living",
"jump": "garden"}, "people": [], "capacity": 1}}

Write with yaml.safe_dump
with open("myfile.yml", "w") as f:
 yaml.safe_dump(house, f, default_flow_style=False)

Look at the file on disk
!cat myfile.yml

Loading with JSON or YAML

Exercise 3b Plotting with matplotlib

Generate two plots, next to each other (on the same row).

The first plot should show sin(x) and cos(x) for the range of x between -1 pi and +1 pi.

The second plot should show sin(x), cos(x) and the sum of sin(x) and cos(x) over the same -pi to +pi range. Set

suitable limits on the axes and pick colours, markers, or line-styles that will make it easy to differentiate

between the curves. Add legends to both axes.

Exercise 3b Answer

bedroom:
 capacity: 1
 exits:
 downstairs: living
 jump: garden
 people: []
garden:
 capacity: 3
 exits:
 inside: living
 people:
 - Sue
kitchen:
 capacity: 1
 exits:
 south: living
 people: []
living:
 capacity: 2
 exits:
 north: kitchen
 outside: garden
 upstairs: bedroom
 people:
 - James

Or with file.write, using yaml.dump to convert to a string
with open("myotherfile.yaml", "w") as yaml_maze_out:
 yaml_maze_out.write(yaml.dump(house, default_flow_style=True))

Look at the file on disk
!cat myotherfile.yaml

{bedroom: {capacity: 1, exits: {downstairs: living, jump: garden}, people: []},
garden: {
 capacity: 3, exits: {inside: living}, people: [Sue]}, kitchen: {capacity: 1,
exits: {
 south: living}, people: []}, living: {capacity: 2, exits: {north: kitchen,
outside: garden,
 upstairs: bedroom}, people: [James]}}

Read into a string then load with json.loads
with open("myfile.json", "r") as f:
 mydataasstring = f.read()
my_json_data = json.loads(mydataasstring)
print(my_json_data["living"])

{'exits': {'north': 'kitchen', 'outside': 'garden', 'upstairs': 'bedroom'},
'people': ['James'], 'capacity': 2}

Read directly with json.load
with open("myotherfile.json") as f_json_maze:
 maze_again = json.load(f_json_maze)
print(maze_again["living"])

{'exits': {'north': 'kitchen', 'outside': 'garden', 'upstairs': 'bedroom'},
'people': ['James'], 'capacity': 2}

Read into a string then load with yaml.safe_load
with open("myfile.yaml", "r") as f:
 mydataasstring = f.read()
my_yaml_data = yaml.safe_load(mydataasstring)
print(my_yaml_data["living"])

{'exits': {'north': 'kitchen', 'outside': 'garden', 'upstairs': 'bedroom'},
'people': ['James'], 'capacity': 2}

Read directly with yaml.safe_load
with open("myotherfile.yaml") as f_yaml_maze:
 maze_again = yaml.safe_load(f_yaml_maze)
print(maze_again["living"])

{'capacity': 2, 'exits': {'north': 'kitchen', 'outside': 'garden', 'upstairs':
'bedroom'}, 'people': ['James']}

Exercise 3c The biggest earthquake in the UK this century

The Problem

GeoJSON is a json-based file format for sharing geographic data. One example dataset is the USGS earthquake data:

Exercise 3c Answer

Relevant sections: 3.1, 2.5.2, 2.5.1

Load the data

Get the text of the web result

Parse the data as JSON

Investigate the data

Understand how the data is structured into dictionaries and lists

Where is the magnitude?

Where is the place description or coordinates?

There is no foolproof way of doing this. A good first step is to see the type of our data!

import matplotlib.pyplot as plt
import numpy as np

Use numpy to get the range of x values (math should work too)
x = np.arange(-np.pi, np.pi, 0.1)

Define figure dimensions
fig = plt.figure(figsize=(15,5))

ax1 = fig.add_subplot(1,2,1)
ax1.plot(x, np.sin(x),label="sin(x)",color='black', linestyle='dashed')
ax1.plot(x, np.cos(x),label="cos(x)", color='#56B4E9')
ax1.legend()
ax1.set_ylim(-1.5, 1.5)

ax2 = fig.add_subplot(1,2,2)
ax2.plot(x, np.sin(x),label="sin(x)",color='black', linestyle='dashed')
ax2.plot(x, np.cos(x),label="cos(x)", color='#56B4E9')
ax2.plot(x, np.cos(x)+np.sin(x), label='cos(x) + sin(x)', color='#E69F00',
marker=".")
ax2.legend()
ax2.set_ylim(-1.5, 1.5)

(-1.5, 1.5)

import requests

quakes = requests.get(
 "http://earthquake.usgs.gov/fdsnws/event/1/query.geojson",
 params={
 "starttime": "2000-01-01",
 "maxlatitude": "58.723",
 "minlatitude": "50.008",
 "maxlongitude": "1.67",
 "minlongitude": "-9.756",
 "minmagnitude": "1",
 "endtime": "2021-01-19",
 "orderby": "time-asc",
 },
)

quakes.text[0:100]

'{"type":"FeatureCollection","metadata":
{"generated":1717402598000,"url":"https://earthquake.usgs.gov'

import requests
quakes = requests.get(
 "http://earthquake.usgs.gov/fdsnws/event/1/query.geojson",
 params={
 "starttime": "2000-01-01",
 "maxlatitude": "58.723",
 "minlatitude": "50.008",
 "maxlongitude": "1.67",
 "minlongitude": "-9.756",
 "minmagnitude": "1",
 "endtime": "2022-11-02", # Change the date to yesterday
 "orderby": "time-asc",
 },
)

import json
Can get the data indirectly via the text and then load json text....
my_quake_data = json.loads(quakes.text) # Section 3.1 - structured data

Requests also has a built in json parser (note this gives exactly the same
result as 'my_quake_data')
requests_json = quakes.json()

type(requests_json)

dict

Now we can navigate through this dictionary to see how the information is stored in the nested dictionaries and

lists. The keys method can indicate what kind of information each dictionary holds, and the len function tells us

how many entries are contained in a list. How you explore is up to you!

It looks like the coordinates are in the geometry section and the magnitude is in the properties section.

Search through the data

Program a search through all the quakes to find the biggest quake

Find the place of the biggest quake

Visualise your answer

Form a URL for an online map service at that latitude and longitude: look back at the introductory example

Display that image

requests_json.keys()

dict_keys(['type', 'metadata', 'features', 'bbox'])

type(requests_json["features"])

list

len(requests_json["features"])

131

requests_json["features"][0]

{'type': 'Feature',
 'properties': {'mag': 2.6,
 'place': '12 km NNW of Penrith, United Kingdom',
 'time': 956553055700,
 'updated': 1415322596133,
 'tz': None,
 'url': 'https://earthquake.usgs.gov/earthquakes/eventpage/usp0009rst',
 'detail': 'https://earthquake.usgs.gov/fdsnws/event/1/query?
eventid=usp0009rst&format=geojson',
 'felt': None,
 'cdi': None,
 'mmi': None,
 'alert': None,
 'status': 'reviewed',
 'tsunami': 0,
 'sig': 104,
 'net': 'us',
 'code': 'p0009rst',
 'ids': ',usp0009rst,',
 'sources': ',us,',
 'types': ',impact-text,origin,phase-data,',
 'nst': None,
 'dmin': None,
 'rms': None,
 'gap': None,
 'magType': 'ml',
 'type': 'earthquake',
 'title': 'M 2.6 - 12 km NNW of Penrith, United Kingdom'},
 'geometry': {'type': 'Point', 'coordinates': [-2.81, 54.77, 14]},
 'id': 'usp0009rst'}

requests_json["features"][0].keys()

dict_keys(['type', 'properties', 'geometry', 'id'])

requests_json["features"][0]["geometry"]

{'type': 'Point', 'coordinates': [-2.81, 54.77, 14]}

requests_json["features"][0]["properties"].keys()

dict_keys(['mag', 'place', 'time', 'updated', 'tz', 'url', 'detail', 'felt',
'cdi', 'mmi', 'alert', 'status', 'tsunami', 'sig', 'net', 'code', 'ids',
'sources', 'types', 'nst', 'dmin', 'rms', 'gap', 'magType', 'type', 'title'])

requests_json["features"][0]["properties"]["mag"]

2.6

quakes = requests_json["features"]

largest_so_far = quakes[0]
for quake in quakes:
 if quake["properties"]["mag"] > largest_so_far["properties"]["mag"]:
 largest_so_far = quake
largest_so_far["properties"]["mag"]

4.8

lon = largest_so_far["geometry"]["coordinates"][0]
lat = largest_so_far["geometry"]["coordinates"][1]

print(f"Latitude: {lat} Longitude: {lon}")

Latitude: 52.52 Longitude: -2.15

[Optional] Equivalent solution using pandas

In this instance Pandas probably isn’t the first thing that you would use as we have nested dictionaries and JSON

works very well in such cases. If we really want to use Pandas we’ll need to flatten the nested values before

constructing a DataFrame.

import IPython
import requests

This is a solution to one of the questions in module 2
The only difference here is that the map type is set to map rather than
satellite view and the zoom is 10 not 12
def op_response(lat, lon):
 response = requests.get(
 "https://static-maps.yandex.ru:443/1.x",
 params={
 "size": "400,400", # size of map
 "ll": str(lon) + "," + str(lat), # longitude & latitude of centre
 "z": 10, # zoom level
 "l": "map", # map layer (map image)
 "lang": "en_US", # language
 },
)
 return response.content

op = op_response(lat, lon)

IPython.core.display.Image(op)

features = requests_json["features"]
features[0]

{'type': 'Feature',
 'properties': {'mag': 2.6,
 'place': '12 km NNW of Penrith, United Kingdom',
 'time': 956553055700,
 'updated': 1415322596133,
 'tz': None,
 'url': 'https://earthquake.usgs.gov/earthquakes/eventpage/usp0009rst',
 'detail': 'https://earthquake.usgs.gov/fdsnws/event/1/query?
eventid=usp0009rst&format=geojson',
 'felt': None,
 'cdi': None,
 'mmi': None,
 'alert': None,
 'status': 'reviewed',
 'tsunami': 0,
 'sig': 104,
 'net': 'us',
 'code': 'p0009rst',
 'ids': ',usp0009rst,',
 'sources': ',us,',
 'types': ',impact-text,origin,phase-data,',
 'nst': None,
 'dmin': None,
 'rms': None,
 'gap': None,
 'magType': 'ml',
 'type': 'earthquake',
 'title': 'M 2.6 - 12 km NNW of Penrith, United Kingdom'},
 'geometry': {'type': 'Point', 'coordinates': [-2.81, 54.77, 14]},
 'id': 'usp0009rst'}

We can use ** to convert a dictionary into pairs of (key, value)
We can then run `{(k1, v1), (k2, v2)}` to convert a list of keys and values back
into a dictionary
combined_features = [{**f["geometry"], **f["properties"]} for f in features]
combined_features[0]

type coordinates mag place time updated tz url

0 earthquake [-2.81,
54.77, 14] 2.6

12 km NNW of
Penrith,
United
Kingdom

956553055700 1415322596133 None https://earthquake.usgs.gov/earthquakes/eventp... https://earthq

1 earthquake
[-1.61,
52.28,
13.1]

4.0

1 km WSW of
Warwick,
United
Kingdom

969683025790 1415322666913 None https://earthquake.usgs.gov/earthquakes/eventp... https://earthq

2 earthquake [1.564,
53.236, 10] 4.0

38 km NNE of
Cromer,
United
Kingdom

977442788510 1415322705662 None https://earthquake.usgs.gov/earthquakes/eventp... https://earthq

3 earthquake [0.872,
58.097, 10] 3.3

171 km ENE
of

Peterhead,
United
Kingdom

984608438660 1415322741153 None https://earthquake.usgs.gov/earthquakes/eventp... https://earthq

4 earthquake [-1.845,
51.432, 10] 2.9

8 km W of
Marlborough,

United
Kingdom

984879824720 1415322742102 None https://earthquake.usgs.gov/earthquakes/eventp... https://earthq

5 rows × 27 columns

type coordinates mag place time updated tz url

19 earthquake [-2.15,
52.52, 9.4] 4.8

2 km ESE of
Wombourn,

United
Kingdom

1032738794600 1600455819229 None https://earthquake.usgs.gov/earthquakes/eventp... https://eart

81 earthquake
[-0.332,
53.403,
18.4]

4.8

1 km NNE of
Market
Rasen,
United
Kingdom

1204073807800 1710463229619 None https://earthquake.usgs.gov/earthquakes/eventp... https://eart

72 earthquake [1.009,
51.085, 10] 4.6

1 km WNW of
Lympne,
United
Kingdom

1177744691360 1657780288041 None https://earthquake.usgs.gov/earthquakes/eventp... https://eart

23 earthquake [-2.219,
53.478, 5] 4.3

1 km ESE of
Manchester,

United
Kingdom

1035200554900 1415323007416 None https://earthquake.usgs.gov/earthquakes/eventp... https://eart

113 earthquake
[-3.8559,
51.7231,
11.55]

4.3

5 km NE of
Clydach,
United
Kingdom

1518877865070 1681205336855 None https://earthquake.usgs.gov/earthquakes/eventp... https://eart

5 rows × 27 columns

You can see that we haven’t really gained much over the JSON solution. We still needed to look at the data to see

its structure and we had to manually flatten the structure.

Module 04

Module 05

Module 06: Troll Treasure

A sample solution for packaging the Troll Treasure code is available in this GitHub repo:

https://github.com/alan-turing-institute/TrollTreasure

{'type': 'earthquake',
 'coordinates': [-2.81, 54.77, 14],
 'mag': 2.6,
 'place': '12 km NNW of Penrith, United Kingdom',
 'time': 956553055700,
 'updated': 1415322596133,
 'tz': None,
 'url': 'https://earthquake.usgs.gov/earthquakes/eventpage/usp0009rst',
 'detail': 'https://earthquake.usgs.gov/fdsnws/event/1/query?
eventid=usp0009rst&format=geojson',
 'felt': None,
 'cdi': None,
 'mmi': None,
 'alert': None,
 'status': 'reviewed',
 'tsunami': 0,
 'sig': 104,
 'net': 'us',
 'code': 'p0009rst',
 'ids': ',usp0009rst,',
 'sources': ',us,',
 'types': ',impact-text,origin,phase-data,',
 'nst': None,
 'dmin': None,
 'rms': None,
 'gap': None,
 'magType': 'ml',
 'title': 'M 2.6 - 12 km NNW of Penrith, United Kingdom'}

import pandas as pd

df = pd.DataFrame.from_records(combined_features)
df.head()

df.sort_values("mag", ascending=False, inplace=True)
df.head()

https://github.com/alan-turing-institute/TrollTreasure

Module 07: Bad Boids

There’s not a single “right” answer to how the code should be refacatored, but on the better_boids branch of the

bad-boids repo we have an improved version of the code with changes based on all the ideas above. You can find it on

GitHub here:

https://github.com/alan-turing-institute/bad-boids/tree/better_boids

You may also find it interesting to browse through the history of commits.

Alternatively, you can checkout the branch in your local clone:

Module 08

Solution to Exercise 1: Iterators and generators

Solution to Exercise 2: Operator Overloading

git checkout better_boids

Using __iter__ and __next__
class range2:
 def __init__(self, max_counter):
 self.max_counter = max_counter
 self.counter = 0

 def __iter__(self):
 return self

 def __next__(self):
 if self.counter < self.max_counter:
 counter = self.counter
 self.counter += 1
 return counter
 else:
 raise StopIteration

Testing it
print(range2(10))
print(tuple(range2(10)))
for i in range2(10):
 print(i)

<__main__.range2 object at 0x7f83143ce2e0>
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
0
1
2
3
4
5
6
7
8
9

Using yield
def range3(max_counter):
 counter = 0
 while counter < max_counter:
 yield counter
 counter += 1

Testing it
print(range3(10))
print(tuple(range3(10)))
for i in range3(10):
 print(i)

<generator object range3 at 0x7f83143cc120>
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
0
1
2
3
4
5
6
7
8
9

class DataLoader:
 def __init__(self):
 pass

 def process(self):
 print("I am loading some data")

class DataCleaner:
 def __init__(self):
 pass

 def process(self):
 print("I am cleaning some data")

class Pipeline:
 def __init__(self):
 self.modules = []

 # Add __iadd__ function to overload '+='
 def __iadd__(self, module):
 self.modules.append(module)
 return self

 def process(self):
 print("I'm a pipeline, don't do anything much by myself")
 for module in self.modules:
 module.process()

https://github.com/alan-turing-institute/bad-boids/tree/better_boids
https://github.com/alan-turing-institute/bad-boids/commits/better_boids

Module 09

Module 10

p = Pipeline()
p += DataLoader()
p += DataCleaner()
p.process()

I'm a pipeline, don't do anything much by myself
I am loading some data
I am cleaning some data

By various contributors. Developed at The Alan Turing Institute based on the UCL RSD course.

Creative Commons Attribution 2.0 Generic (CC BY 2.0).

https://github.com/alan-turing-institute/rse-course/graphs/contributors
https://turing.ac.uk/
https://github.com/UCL/rsd-engineeringcourse
https://creativecommons.org/licenses/by/2.0/

