Community detection - Bayesian inference for robust detection of assortative structure
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Motivation

- We are interested in finding assortative structure in networks

- The general stochastic block models (SBMs) can describe general mixing patterns including
assortativity as a special case

- However, when assortativity is indeed the dominating pattern, the general model gives more
than we need

Our contribution: develop a nonparametric Bayesian approach based on a constrained variant
of SBM to detect assortative structure
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Top panel: connection matrix indicating the probability of placing edges between different
groups with assortative (left) core-periphery (middle) and a mixture of the former two structures
(right). Bottom panel: networks generated from SBMs with community structure.

Bayesian inference for community detection

- For an observed network with adjacency matrix A, we sample or maximise from the posterior
distribution of vertices partition b

- The Bayes' rule
P(A[b)P(b)
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- The marginal likelihood of our model, the planted partition model (PPM), reads as
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- With any appropriate choice of the prior P(b), we can approximate the posterior distribution
P(b|A) via smapling with Markov Chain Monte Carlo (MCMC)

- For model selection, we compute the description length of the data

> =—InP(A|b) — In P(b)

Modularity optimisation and maximum likelihood are not equivalent

Model selection

- As shown in the literature, there is a connection between the log-likelihood function of PPM
and the modularity function
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- Maximising modularity is equivalent to maximising the log-likelihood of PPM when the model
parameters are set to constant (i.e. u,~y, Aout, and 16;})

- However, such equivalence is tenuous since model parameters should be estimated via the
maximum likelihood principle

- Even when it holds, modularity optimisation is prone to overfitting just as the maximum like-
lihood approach does

Robust against overfitting

Original network

Modularity Optmisation Planted Partition Model
B =185,0Q = 0.84 B=20 =084

Randomised network

Modularity Optimisation Planted Partition Model
B =168,Q = 0.75 B=2,0Q=0.11

- We applied modularity optimisation and our Bayesian approach with PPM to a network of
protein-protein interactions

- Results obtained in the original network (top panel) and a randomised version of the network
(bottom panel) are shown above

- Modularity optimisation finds over a hundred of communities in the original and the ran-
domised network, with high value of modularity in both cases

- In comparison, the Bayesian approach does not return spurious communities in the random
case

College football network
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Nested SBM, 3 = 1780.58 PPM, ¥ = 1761.50
High-school social network

Nested SBM, ¥ = 8775.82 PPM, > = 8944.09
Rather taking for granted, we can check the assumption of assortivity by model selection. The
best model is the one has the minimum description length >

- |f assortativity is indeed the dominating pattern, partitions given by PPM should ascribe the
smallest ¥ compared to other model variants (e.g. college football network)

- When more general pattern is the dominating pattern, other model variants allowing a general
mixing pattern should outperform PPM (e.g. high-school social network)
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In our study of a selection of empirical networks,
- Only a few networks with assortativity being the dominating pattern

- Most of the time (especially in large networks) more general mixing pattern are preferred,
raising a caveat on the practice of exclusively searching for assortative structure

Further materials

paper: available on arXiv https:/arxiv.org/abs/2006.14493
code: available in the graph-tool library https:/graph-tool.skewed.de/
contact: |.zhang@bath.ac.uk



