Probabilistic Risk Awareness (PRA) framework to generate Early-Warning Signals of COVID-19

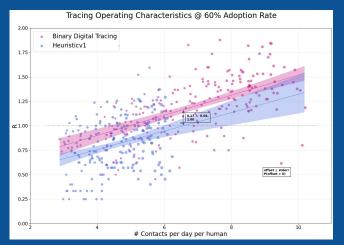
PRESENTER: Prateek Gupta, University of Oxford PI:: Yoshua Bengio, Université de Montréal

MOTIVATION: How could we expand the economy-health frontier during the pandemic?

- Economic and health outcomes have fallen short of their efficient levels
- Monetary policies or vaccine development aim to revive these outcomes back
- Tracing can play a role in opening up the economy while detecting and preventing outbreaks at the same time

EXISTING TRACING METHODS

- Manual Tracing requires human experts, potential suspects to trace are biased towards known contacts, makes an expert use of clues like age and medical conditions to recommend quarantine or not.
- Binary Digital Tracing (BDT) requires an app, potential suspects are digitally registered interactions with other app-users, uses reported test results to notify past contacts to quarantine or not.
- PRA Tracing requires an app, potential suspects are digitally registered interactions with other app-users, uses individual clues, symptoms, test results and interactions to evaluate risk level of users and recommend varying degrees of social distancing.


What is wrong with digital tracing?

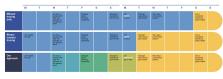
BDT notifies contacts of positive test results, but ...

- Tests are administered only after symptoms
- Test have high false negative rates
- Test results have a 1-2 days delay
- Tests are highly "uncomfortable" to act as a deterrent
- Tests are highly "uncomfortable" to act as a deterrespect of the property of the

A Contact Tracing framework to **generate early-warning signals of COVID-19** and **restore pre-pandemic economic** and **health outcomes**.

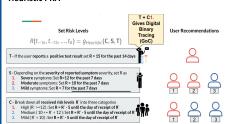
Simulation results (based on 3K population) suggests that (i) for the same outcome of R, PRA allows for 1 extra contact (per day per human) (ii) Similarly, for the same mobility restrictions PRA achieves a lower R, about 0.17 lower than the existing tracing method (BDT)

Authors


Yoshua Bengio, Tristan Deleu, Prateek Gupta, Tegan Maharaj, Meng Qu, Nasim Rahaman, Victor Schmidt, Pierre-Luc St-Charles, Martin Weiss, Hannah Alsdurf, Joanna Merckx, Nanor Minoyan, Soren Harnois-Leblanc, Akshay Patel, Yang Zhang, Andrew Williams, Olexa Bilaniuk, David Buckeridge, Gaétan Marceau Caron, Pierre Luc Carrier, Joumana Ghosn, Eilif B. Muller, Satya Ortiz-Gagné, Christopher Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang

Privacy preserving PRA Framework

Note: only an integer is exchanged between two users resulting in an exchange of only N bits anytime. Lower values of N are preferred. Simulation uses N=4, resulting in a maximum risk level of 4. Sensitivity on N is WIP


Example scenario of better early warning signals

How to predict contagiousness?

- Rule-based PRA (Heuristic v1) directly sets today's and past risk level of users based on symptoms and risk level of contacts.
- (WIP) Machine Learning based PRA predicts contagiousness using all the clues i.e. medical conditions, risk level of contacts, and symptoms.

Heuristic PRA

