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Monte Carlo Fusion

Provides theory to carry out perfect inference for the target:

π(x) ∝ f1(x) · · · fC(x) =

C∏
c=1

fc(x) (1)

Uses rejection sampling on the extended target distribution:

g(x(1:C),y) ∝
C∏
c=1

[
f 2
c (x(c)) · pc(y | x(c)) · 1

fc(y)

]
(2)

Let pc(y | x(c)) be a transition density of a stochastic process with stationary
distribution f 2

c (x), then (2) admits π as a marginal for y.
Proposal distribution:

h(x(1:C),y) ∝
C∏
c=1

[
fc
(
x(c)
)]
· exp

{
− (y − x̃)ᵀΛ−1(y − x̃)

2

}
(3)

where

x̃ =

( C∑
c=1

Λ−1
c

)−1( C∑
c=1

Λ−1
c x(c)

)
(4)

Λ−1 =

C∑
c=1

Λ−1
c

T
(5)

Considering the transition probability of a d-dimensional double Langevin dif-
fusion process, then under certain mild conditions,

g(x(1:C),y)

h(x(1:C),y)
∝ ρ ·Q (6)

where ρ and Q are two probability values.

Algorithm 1 Pre-conditioned Monte Carlo Fusion

1. Initialise a value for T > 0

2. Simulate a proposal y from h:
a) For c = 1, . . . , C, simulate x(c) ∼ fc(x) and calculate x̃

b) Simulate y ∼ Nd(x̃,Λ)

3. Accept y as a sample from (1) with probability ρ ·Q

Hierarchical and Sequential Monte Carlo Fusion

Problem: Fusion becomes inefficient as the number of sub-posteriors increases.

Figure 1: The ‘fork-and-join’ approach Figure 2: Run-times of MC fusion for

fc ∝ e−
x4

2C for c = 1, . . . , C for varying C

However, we can adopt a divide-and-conquer approach:

Figure 3: The hierarchical approach Figure 4: The sequential approach
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Tempering for Monte Carlo Fusion

Problem: Fusion is inefficient when the sub-posteriors conflict.

Figure 6: Run-times of MC fusion for f1 ∼ N (0, 1) and f2 ∼ N (µ, 1) for different µ

Let fβc (x) be the power-tempered sub-posterior, for β ∈ (0, 1], then

π(x) ∝

1
β∏
i=1

[
C∏
c=1

fβc (x)

]
where

1

β
∈ N (7)

Example. Target π(x) ∝ f1f2, where f1 ∼ N (−8, 1) and f2 ∼ N (2, 0.5).

1. Use Monte Carlo fusion to obtain samples for πβ ∝ fβ1 f
β
2 with β = 1

8:

Figure 7: Kernel density fitting based on 10, 000 realisations for density proportional to fβ1 f
β
2

(blue) and the true density curves for fβ1 (pink) and fβ2 (orange)

2. Use hierarchical or sequential Monte Carlo fusion and samples for πβ to
obtain samples for π ∝ f1f2

Figure 8: Kernel density fitting for πβ

(hierarchical Monte Carlo fusion)
Figure 9: Kernel density fitting for πβ

(sequential Monte Carlo fusion)

Figure 10: Kernel density fitting based on 10, 000 realisations for density proportional to π
based on hierarchical fusion (red dashed), sequential fusion (green dotted), and the true

density curves for f1 (pink) and f2 (orange)
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