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ABSTRACT

METHODS

For the generation of features, sequences of two domains were concatenated
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test set proteins with and without constraints. \When constraints
were not applied. only ten interfaces could be predicted correctly;
whereas, 50 interfaces were predicted correctly when predicted
distance potentials were implemented as constraints. For the domain
pairs with higher +2 A range accuracies, interfaces were predicted with
at least acceptable quality. Domain interface quality was determined
based on CAPRI protein docking competition criteria.

Figure 5. Prediction success increases as the number of the real
contacts (domain interface surface) and Nf values (alignment depth)
increase. Interface of the domain pairs with higher number of real
contacts can be predicted successfully unless it has low Nf value.
Fraction of native contacts (f , ), interface root mean square deviation
(I-RMSD), ligand root mean square deviation (L-RMSD) are measures to
determine the quality of the predicted domain interface. Higher f .
indicates better predictions, lower I-RMSD and L-RMSD values indicate
better predictions. Nf value: number of sequences in the MSA divided by
the sequence length, representing how deep the alignment is.
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