Explainability

Global Surrogates

Approximates entire model behaviour with simpler model (e.g., GAMs, Model Distillation)

4 techniques in this subcategory

4 techniques
GoalsModelsData TypesDescription
Ridge Regression Surrogates
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
This technique approximates a complex model by training a ridge regression (a linear model with L2 regularisation) on...
RuleFit
Algorithmic
Architecture/model Agnostic
Paradigm/supervised
+1
Any
RuleFit creates interpretable surrogate models that can explain complex black-box models or serve as interpretable...
Model Distillation
Algorithmic
Architecture/neural Networks
Paradigm/parametric
+3
Any
Model distillation transfers knowledge from a large, complex model (teacher) to a smaller, more efficient model...
Generalized Additive Models
Algorithmic
Architecture/linear Models/gam
Paradigm/parametric
+2
Tabular
An intrinsically interpretable modelling technique that extends linear models by allowing flexible, nonlinear...
Rows per page
Page 1 of 1