expertise needed

statistics

Requires knowledge of statistical methods and analysis

56 techniques
GoalsModelsData TypesDescription
SHapley Additive exPlanations
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
SHAP explains model predictions by quantifying how much each input feature contributes to the outcome. It assigns an...
Permutation Importance
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
Permutation Importance quantifies a feature's contribution to a model's performance by randomly shuffling its values and...
Mean Decrease Impurity
Algorithmic
Architecture/tree Based
Paradigm/supervised
+1
Tabular
Mean Decrease Impurity (MDI) quantifies a feature's importance in tree-based models (e.g., Random Forests, Gradient...
Integrated Gradients
Algorithmic
Architecture/neural Networks
Paradigm/parametric
+3
Any
Integrated Gradients is an attribution technique that explains a model's prediction by quantifying the contribution of...
Sobol Indices
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
Sobol Indices quantify how much each input feature contributes to the total variance in a model's predictions through...
Factor Analysis
Algorithmic
Architecture/model Agnostic
Paradigm/unsupervised
+1
Tabular
Factor analysis is a statistical technique that identifies latent variables (hidden factors) underlying observed...
Principal Component Analysis
Algorithmic
Architecture/model Agnostic
Paradigm/unsupervised
+1
Any
Principal Component Analysis transforms high-dimensional data into a lower-dimensional representation by finding the...
t-SNE
Visualization
Architecture/model Agnostic
Requirements/black Box
Any
t-SNE (t-Distributed Stochastic Neighbour Embedding) is a non-linear dimensionality reduction technique that creates 2D...
UMAP
Visualization
Architecture/model Agnostic
Requirements/black Box
Any
UMAP (Uniform Manifold Approximation and Projection) is a non-linear dimensionality reduction technique that creates 2D...
ANCHOR
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
ANCHOR generates high-precision if-then rules that explain individual predictions by identifying the minimal set of...
RuleFit
Algorithmic
Architecture/model Agnostic
Paradigm/supervised
+1
Any
RuleFit creates interpretable surrogate models that can explain complex black-box models or serve as interpretable...
Monte Carlo Dropout
Algorithmic
Architecture/neural Networks
Paradigm/probabilistic
+4
Any
Monte Carlo Dropout estimates prediction uncertainty by applying dropout (randomly setting neural network weights to...
Out-of-Distribution Detector for Neural Networks
Algorithmic
Architecture/neural Networks
Paradigm/discriminative
+3
Any
ODIN (Out-of-Distribution Detector for Neural Networks) identifies when a neural network encounters inputs significantly...
Permutation Tests
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
Permutation tests assess the statistical significance of observed results (such as model accuracy, feature importance,...
Demographic Parity Assessment
Algorithmic
Architecture/model Agnostic
Paradigm/supervised
+1
Any
Demographic Parity Assessment evaluates whether a model produces equal positive prediction rates across different...
Sensitivity Analysis for Fairness
Algorithmic
Architecture/model Agnostic
Paradigm/supervised
+2
Any
Sensitivity Analysis for Fairness systematically evaluates how model predictions change when sensitive attributes or...
Synthetic Data Generation
Algorithmic
Architecture/neural Networks/generative/gan
Architecture/neural Networks/generative/vae
+5
Any
Synthetic data generation creates artificial datasets that aim to preserve the statistical properties, distributions,...
Differential Privacy
Algorithmic
Architecture/model Agnostic
Requirements/black Box
Any
Differential privacy provides mathematically rigorous privacy protection by adding carefully calibrated random noise to...
Prediction Intervals
Algorithmic
Architecture/model Agnostic
Paradigm/supervised
+1
Any
Prediction intervals provide a range of plausible values around a model's prediction, expressing uncertainty as 'the...
Quantile Regression
Algorithmic
Architecture/linear Models/regression
Architecture/neural Networks
+4
Any
Quantile regression estimates specific percentiles (quantiles) of the target variable rather than just predicting the...
Rows per page
Page 1 of 3