deepsensor.active_learning.acquisition_fns#
- class AcquisitionFunction(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Parent class for acquisition functions. - __call__(task, *args, **kwargs)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- numpy.ndarray– Acquisition function value/s. Shape ().
- Raises:
- NotImplementedError – Because this is an abstract method, it must be implemented by the subclass. 
 
 - min_or_max = None#
 
- class AcquisitionFunctionOracle(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Signifies that the acquisition function is computed using the true target values. 
- class AcquisitionFunctionParallel(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Parent class for acquisition functions that are computed across all search points in parallel. - __call__(task, X_s, **kwargs)[source]#
- … - Parameters:
- **kwargs – 
- task ( - Task) – Task object containing context and target sets.
- X_s ( - numpy.ndarray) – Search points. Shape (2, N_search).
 
- No-index:
- Returns:
- numpy.ndarray– Should return acquisition function value/s. Shape (N_search,).
- Raises:
- NotImplementedError – Because this is an abstract method, it must be implemented by the subclass. 
 
 
- class ContextDist(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Distance to closest context point. - __call__(task, X_s, **kwargs)[source]#
- … - Parameters:
- **kwargs – 
- task ( - Task) – [Description of the task parameter.]
- X_s ( - numpy.ndarray) – [Description of the X_s parameter.]
 
- No-index:
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'max'#
 
- class ExpectedImprovement(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Expected improvement acquisition function. - Note - The current implementation of this acquisition function is only valid for maximisation. - __call__(task, X_s, **kwargs)[source]#
- Parameters:
- **kwargs – 
- task ( - Task) – Task object containing context and target sets.
- X_s ( - numpy.ndarray) – Search points. Shape (2, N_search).
 
- No-index:
- Returns:
- numpy.ndarray– Acquisition function value/s. Shape (N_search,).
 
 - min_or_max = 'max'#
 
- class JointEntropy(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Joint entropy of the predictive distribution. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class MeanMarginalEntropy(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Mean of the entropies of the marginal predictive distributions. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class MeanStddev(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Mean of the marginal variances. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – [Description of the task parameter.]
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class MeanVariance(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Mean of the marginal variances. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – [Description of the task parameter.]
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class OracleJointNLL(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Oracle joint negative log-likelihood. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class OracleMAE(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Oracle mean absolute error. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class OracleMarginalNLL(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Oracle marginal negative log-likelihood. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class OracleRMSE(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Oracle root mean squared error. - __call__(task)[source]#
- … - No-index:
- Parameters:
- task ( - Task) – Task object containing context and target sets.
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'min'#
 
- class Random(*args, seed=42, **kwargs)[source]#
- Random acquisition function. - __call__(task, X_s, **kwargs)[source]#
- … - Parameters:
- **kwargs – 
- task ( - Task) – [Description of the task parameter.]
- X_s ( - numpy.ndarray) – [Description of the X_s parameter.]
 
- No-index:
- Returns:
- float – A random acquisition function value. 
 
 - min_or_max = 'max'#
 
- class Stddev(model=None, context_set_idx=0, target_set_idx=0)[source]#
- Model standard deviation. - __call__(task, X_s, **kwargs)[source]#
- … - Parameters:
- **kwargs – 
- task ( - Task) – [Description of the task parameter.]
- X_s ( - numpy.ndarray) – [Description of the X_s parameter.]
 
- No-index:
- Returns:
- [Type of the return value] – [Description of the return value.] 
 
 - min_or_max = 'max'#
 
