deepsensor.active_learning.acquisition_fns#
- class AcquisitionFunction(model=None, context_set_idx=0, target_set_idx=0)[source]#
Parent class for acquisition functions.
- __call__(task, *args, **kwargs)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
numpy.ndarray
– Acquisition function value/s. Shape ().- Raises:
NotImplementedError – Because this is an abstract method, it must be implemented by the subclass.
- min_or_max = None#
- class AcquisitionFunctionOracle(model=None, context_set_idx=0, target_set_idx=0)[source]#
Signifies that the acquisition function is computed using the true target values.
- class AcquisitionFunctionParallel(model=None, context_set_idx=0, target_set_idx=0)[source]#
Parent class for acquisition functions that are computed across all search points in parallel.
- __call__(task, X_s, **kwargs)[source]#
…
- Parameters:
**kwargs –
task (
Task
) – Task object containing context and target sets.X_s (
numpy.ndarray
) – Search points. Shape (2, N_search).
- No-index:
- Returns:
numpy.ndarray
– Should return acquisition function value/s. Shape (N_search,).- Raises:
NotImplementedError – Because this is an abstract method, it must be implemented by the subclass.
- class ContextDist(model=None, context_set_idx=0, target_set_idx=0)[source]#
Distance to closest context point.
- __call__(task, X_s, **kwargs)[source]#
…
- Parameters:
**kwargs –
task (
Task
) – [Description of the task parameter.]X_s (
numpy.ndarray
) – [Description of the X_s parameter.]
- No-index:
- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'max'#
- class ExpectedImprovement(model=None, context_set_idx=0, target_set_idx=0)[source]#
Expected improvement acquisition function.
Note
The current implementation of this acquisition function is only valid for maximisation.
- __call__(task, X_s, **kwargs)[source]#
- Parameters:
**kwargs –
task (
Task
) – Task object containing context and target sets.X_s (
numpy.ndarray
) – Search points. Shape (2, N_search).
- No-index:
- Returns:
numpy.ndarray
– Acquisition function value/s. Shape (N_search,).
- min_or_max = 'max'#
- class JointEntropy(model=None, context_set_idx=0, target_set_idx=0)[source]#
Joint entropy of the predictive distribution.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class MeanMarginalEntropy(model=None, context_set_idx=0, target_set_idx=0)[source]#
Mean of the entropies of the marginal predictive distributions.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class MeanStddev(model=None, context_set_idx=0, target_set_idx=0)[source]#
Mean of the marginal variances.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – [Description of the task parameter.]- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class MeanVariance(model=None, context_set_idx=0, target_set_idx=0)[source]#
Mean of the marginal variances.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – [Description of the task parameter.]- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class OracleJointNLL(model=None, context_set_idx=0, target_set_idx=0)[source]#
Oracle joint negative log-likelihood.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class OracleMAE(model=None, context_set_idx=0, target_set_idx=0)[source]#
Oracle mean absolute error.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class OracleMarginalNLL(model=None, context_set_idx=0, target_set_idx=0)[source]#
Oracle marginal negative log-likelihood.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class OracleRMSE(model=None, context_set_idx=0, target_set_idx=0)[source]#
Oracle root mean squared error.
- __call__(task)[source]#
…
- No-index:
- Parameters:
task (
Task
) – Task object containing context and target sets.- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'min'#
- class Random(*args, seed=42, **kwargs)[source]#
Random acquisition function.
- __call__(task, X_s, **kwargs)[source]#
…
- Parameters:
**kwargs –
task (
Task
) – [Description of the task parameter.]X_s (
numpy.ndarray
) – [Description of the X_s parameter.]
- No-index:
- Returns:
float – A random acquisition function value.
- min_or_max = 'max'#
- class Stddev(model=None, context_set_idx=0, target_set_idx=0)[source]#
Model standard deviation.
- __call__(task, X_s, **kwargs)[source]#
…
- Parameters:
**kwargs –
task (
Task
) – [Description of the task parameter.]X_s (
numpy.ndarray
) – [Description of the X_s parameter.]
- No-index:
- Returns:
[Type of the return value] – [Description of the return value.]
- min_or_max = 'max'#