deepsensor.plot#
- acquisition_fn(task, acquisition_fn_ds, X_new_df, data_processor, crs, col_dim='iteration', cmap='Greys_r', figsize=3, add_colorbar=True, max_ncol=5)[source]#
- Parameters:
task (
Task
) – Task containing the context set used to compute the acquisition function.acquisition_fn_ds (
numpy.ndarray
) – Acquisition function dataset.X_new_df (
pandas.DataFrame
) – Dataframe containing the placement locations.data_processor (
DataProcessor
) – Data processor used to unnormalise the context set and placement locations.crs (cartopy CRS) – Coordinate reference system for the plots.
col_dim (str, optional) – Column dimension to plot over, by default “iteration”.
cmap (str | matplotlib.colors.Colormap, optional) – Color map to use for the plots, by default “Greys_r”.
figsize (int, optional) – Figure size in inches, by default 3.
add_colorbar (bool, optional) – Whether to add a colorbar to the plots, by default True.
max_ncol (int, optional) – Maximum number of columns to use for the plots, by default 5.
- Returns:
- matplotlib.pyplot.Figure
A figure containing the acquisition function plots.
- Raises:
ValueError – If a column dimension is encountered that is not one of
["time", "sample"]
.AssertionError – If the number of columns in the acquisition function dataset is greater than
max_ncol
.
- context_encoding(model, task, task_loader, batch_idx=0, context_set_idxs=None, land_idx=None, cbar=True, clim=None, cmap='viridis', verbose_titles=True, titles=None, size=3, return_axes=False)[source]#
Plot the
ConvNP
SetConv encoding of a context set in a task.- Parameters:
model (
ConvNP
) – ConvNP model.task (
Task
) – Task containing context set to plot encoding of …task_loader (
TaskLoader
) – DataLoader used to load the data, containing context set metadata used for plotting.batch_idx (int, optional) – Batch index in encoding to plot, by default 0.
context_set_idxs (List[int] | int, optional) – Indices of context sets to plot, by default None (plots all context sets).
land_idx (int, optional) – Index of the land mask in the encoding (used to overlay land contour on plots), by default None.
cbar (bool, optional) – Whether to add a colorbar to the plots, by default True.
clim (tuple, optional) – Colorbar limits, by default None.
cmap (str | matplotlib.colors.Colormap, optional) – Color map to use for the plots, by default “viridis”.
verbose_titles (bool, optional) – Whether to include verbose titles for the variable IDs in the context set (including the time index), by default True.
titles (dict, optional) – Dict of titles to override for each subplot, by default None. If None, titles are generated from context set metadata.
size (int, optional) – Size of the figure in inches, by default 3.
return_axes (bool, optional) – Whether to return the axes of the figure, by default False.
- Returns:
matplotlib.figure.Figure
| Tuple[matplotlib.figure.Figure
,matplotlib.pyplot.Axes
] – Either a figure containing the context set encoding plots, or a tuple containing thefigure
and theaxes
of the figure (ifreturn_axes
was set toTrue
).
- extent_str_to_tuple(extent)[source]#
Convert extent string to (lon_min, lon_max, lat_min, lat_max) tuple.
- Parameters:
extent – str String of region name. Options are: “global”, “usa”, “uk”, “europe”.
- Returns:
- tuple
Tuple of (lon_min, lon_max, lat_min, lat_max).
- feature_maps(model, task, n_features_per_layer=1, seed=None, figsize=3, add_colorbar=False, cmap='Greys')[source]#
Plot the feature maps of a
ConvNP
model’s decoder layers after a forward pass with aTask
.- Parameters:
model (
ConvNP
) –…
task (
Task
) –…
n_features_per_layer (int, optional) – …, by default 1.
seed (int, optional) – …, by default None.
figsize (int, optional) – …, by default 3.
add_colorbar (bool, optional) – …, by default False.
cmap (str | matplotlib.colors.Colormap, optional) – …, by default “Greys”.
- Returns:
matplotlib.figure.Figure – A figure containing the feature maps.
- Raises:
ValueError – If the backend is not recognised.
- offgrid_context(axes, task, data_processor=None, task_loader=None, plot_target=False, add_legend=True, context_set_idxs=None, markers=None, colors=None, **scatter_kwargs)[source]#
Plot the off-grid context points on
axes
.Uses a provided
DataProcessor
to unnormalise the context coordinates if provided.- Parameters:
axes (
numpy.ndarray
| List[matplotlib.axes.Axes
] | Tuple[matplotlib.axes.Axes
]) – Axes to plot on.task (
Task
) – Task containing the context set to plot.data_processor (
DataProcessor
, optional) – Data processor used to unnormalise the context set, by default None.task_loader (
TaskLoader
, optional) – Task loader used to load the data, containing context set metadata used for plotting, by default None.plot_target (bool, optional) – Whether to plot the target set, by default False.
add_legend (bool, optional) – Whether to add a legend to the plot, by default True.
context_set_idxs (List[int] | int, optional) – Indices of context sets to plot, by default None (plots all context sets).
markers (str, optional) – Marker styles to use for each context set, by default None.
colors (str, optional) – Colors to use for each context set, by default None.
scatter_kwargs – Additional keyword arguments to pass to the scatter plot.
- Returns:
None
- offgrid_context_observations(axes, task, data_processor, task_loader, context_set_idx, format_str=None, extent=None, color='black')[source]#
Plot unnormalised context observation values.
- Parameters:
axes (
numpy.ndarray
| List[matplotlib.axes.Axes
] | Tuple[matplotlib.axes.Axes
]) – Axes to plot on.task (
Task
) – Task containing the context set to plot.data_processor (
DataProcessor
) – Data processor used to unnormalise the context set.task_loader (
TaskLoader
) – Task loader used to load the data, containing context set metadata used for plotting.context_set_idx (int) – Index of the context set to plot.
format_str (str, optional) – Format string for the context observation values. By default
"{:.2f}"
.extent (Tuple[int, int, int, int], optional) – Extent of the plot, by default None.
color (str, optional) – Color of the text, by default “black”.
- Returns:
None.
- Raises:
AssertionError – If the context set is gridded.
AssertionError – If the context set is not 1D.
AssertionError – If the task’s “Y_c” value for the context set ID is not 2D.
AssertionError – If the task’s “Y_c” value for the context set ID does not have exactly one variable.
- placements(task, X_new_df, data_processor, crs, extent=None, figsize=3, **scatter_kwargs)[source]#
…
- Parameters:
task (
Task
) – Task containing the context set used to compute the acquisition function.X_new_df (
pandas.DataFrame
) – Dataframe containing the placement locations.data_processor (
DataProcessor
) – Data processor used to unnormalise the context set and placement locations.crs (cartopy CRS) – Coordinate reference system for the plots.
extent (Tuple[int, int, int, int] | str, optional) – Extent of the plots, by default None.
figsize (int, optional) – Figure size in inches, by default 3.
- Returns:
matplotlib.figure.Figure
A figure containing the placement plots.
- prediction(pred, date=None, data_processor=None, task_loader=None, task=None, prediction_parameters='all', crs=None, colorbar=True, cmap='viridis', size=5, extent=None)[source]#
Plot the mean and standard deviation of a prediction.
- Parameters:
pred (
Prediction
) – Prediction to plot.date (str |
pandas.Timestamp
) – Date of the prediction.data_processor (
DataProcessor
) – Data processor used to unnormalise the context set.task_loader (
TaskLoader
) – Task loader used to load the data, containing context set metadata used for plotting.task (
Task
, optional) – Task containing the context data to overlay.prediction_parameters (List[str] | str, optional) – Prediction parameters to plot, by default “all”.
crs (cartopy CRS, optional) – Coordinate reference system for the plots, by default None.
colorbar (bool, optional) – Whether to add a colorbar to the plots, by default True.
cmap (str) – Colormap to use for the plots. By default “viridis”.
size (int, optional) – Size of the figure in inches per axis, by default 5.
extent – (tuple | str, optional): Tuple of (lon_min, lon_max, lat_min, lat_max) or string of region name. Options are: “global”, “usa”, “uk”, “europe”. Defaults to None (no setting of extent).
c –
- receptive_field(receptive_field, data_processor, crs, extent='global')[source]#
…
- Parameters:
receptive_field – Receptive field to plot.
data_processor (
DataProcessor
) – Data processor used to unnormalise the context set.crs (cartopy CRS) – Coordinate reference system for the plots.
extent (str | Tuple[float, float, float, float], optional) – Extent of the plot, in format (x2_min, x2_max, x1_min, x1_max), e.g. in lat-lon format (lon_min, lon_max, lat_min, lat_max). By default “global”.
- Returns:
None.
- task(task, task_loader, figsize=3, markersize=None, equal_aspect=False, plot_ticks=False, extent=None)[source]#
Plot the context and target sets of a task.
- Parameters:
task (
Task
) – Task to plot.task_loader (
TaskLoader
) – Task loader used to loadtask
, containing variable IDs used for plotting.figsize (int, optional) – Figure size in inches, by default 3.
markersize (int, optional) – Marker size (in units of points squared), by default None. If None, the marker size is set to
(2**2) * figsize / 3
.equal_aspect (bool, optional) – Whether to set the aspect ratio of the plots to be equal, by default False.
plot_ticks (bool, optional) – Whether to plot the coordinate ticks on the axes, by default False.
extent (Tuple[int, int, int, int], optional) – Extent of the plot in format (x2_min, x2_max, x1_min, x1_max). Defaults to None (uses the smallest extent that contains all data points across all context and target sets).
- Returns: