deepsensor.train.train#
- class Trainer(model, lr=5e-05)[source]#
Bases:
object
Class for training ConvNP models with an Adam optimiser.
- Parameters:
lr (float) – Learning rate
- set_gpu_default_device()[source]#
Set default GPU device for the backend.
- Raises:
RuntimeError – If no GPU is available.
RuntimeError – If backend is not supported.
NotImplementedError – If backend is not supported.
- Returns:
None.
- train_epoch(model, tasks, lr=5e-05, batch_size=None, opt=None, progress_bar=False, tqdm_notebook=False)[source]#
Train model for one epoch.
- Parameters:
model (
ConvNP
) – Model to train.tasks (List[
Task
]) – List of tasks to train on.lr (float, optional) – Learning rate, by default 5e-5.
batch_size (int, optional) – Batch size. Defaults to None. If None, no batching is performed.
opt (Optimizer, optional) – TF or Torch optimizer. Defaults to None. If None,
tensorflow:tensorflow.keras.optimizer.Adam
is used.progress_bar (bool, optional) – Whether to display a progress bar. Defaults to False.
tqdm_notebook (bool, optional) – Whether to use a notebook progress bar. Defaults to False.
- Returns:
List[float] – List of losses for each task/batch.