autoemulate.emulators.gradient_boosting#
- class GradientBoosting(loss='squared_error', learning_rate=0.1, n_estimators=100, max_depth=3, min_samples_split=2, min_samples_leaf=1, subsample=1.0, max_features=None, ccp_alpha=0.0, n_iter_no_change=None, random_state=None)[source]#
Bases:
BaseEstimator
,RegressorMixin
Gradient Boosting Emulator.
Wraps Gradient Boosting regression from scikit-learn.
- fit(X, y)[source]#
Fits the emulator to the data.
- Parameters:
X ({array-like, sparse matrix}, shape (n_samples, n_features)) – The training input samples.
y (array-like, shape (n_samples,) or (n_samples, n_outputs)) – The target values (real numbers).
- Returns:
self – Returns self.
- Return type: