autoemulate.emulators.neural_net_sk#
- class NeuralNetSk(hidden_layer_sizes=(100, 100), activation='relu', solver='adam', alpha=0.0001, learning_rate='constant', learning_rate_init=0.001, max_iter=200, tol=0.0001, random_state=None)[source]#
Bases:
BaseEstimator
,RegressorMixin
Multi-layer perceptron Emulator.
Wraps MLPRegressor from scikit-learn.
- fit(X, y)[source]#
Fits the emulator to the data.
- Parameters:
X ({array-like, sparse matrix}, shape (n_samples, n_features)) – The training input samples.
y (array-like, shape (n_samples,) or (n_samples, n_outputs)) – The target values (class labels in classification, real numbers in regression).
- Returns:
self – Returns self.
- Return type: