autoemulate.emulators.support_vector_machines#
- class SupportVectorMachines(kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1, normalise_y=True)[source]#
Bases:
BaseEstimator
,RegressorMixin
Support Vector Machines Emulator.
Wraps Support Vector Regressor from scikit-learn.
- fit(X, y)[source]#
Fits the emulator to the data.
- Parameters:
X ({array-like, sparse matrix}, shape (n_samples, n_features)) – The training input samples.
y (array-like, shape (n_samples,) or (n_samples, n_outputs)) – The target values (real numbers).
- Returns:
self – Returns self.
- Return type: