1.5 Dictionaries
Contents
1.5 Dictionaries#
Estimated time for this notebook: 10 minutes
1.5.1 The Python Dictionary#
Python supports a container type called a dictionary.
This is also known as an “associative array”, “map” or “hash” in other languages.
In a list, we use a number to look up an element:
names = "Martin Luther King".split(" ")
names[1]
'Luther'
In a dictionary, we look up an element using another object of our choice:
me = {"name": "James", "age": 39, "Jobs": ["Programmer", "Teacher"]}
me
{'name': 'James', 'age': 39, 'Jobs': ['Programmer', 'Teacher']}
me["Jobs"]
['Programmer', 'Teacher']
me["age"]
39
type(me)
dict
Keys and Values#
The things we can use to look up with are called keys:
me.keys()
dict_keys(['name', 'age', 'Jobs'])
The things we can look up are called values:
me.values()
dict_values(['James', 39, ['Programmer', 'Teacher']])
When we test for containment on a dict
we test on the keys:
"Jobs" in me
True
"James" in me
False
"James" in me.values()
True
Immutable Keys Only#
The way in which dictionaries work is one of the coolest things in computer science: the “hash table”. The details of this are beyond the scope of this course, but we will consider some aspects in the section on performance programming.
One consequence of this implementation is that you can only use immutable things as keys.
good_match = {("Lamb", "Mint"): True, ("Bacon", "Chocolate"): False}
but:
illegal = {["Lamb", "Mint"]: True, ["Bacon", "Chocolate"]: False}
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[14], line 1
----> 1 illegal = {["Lamb", "Mint"]: True, ["Bacon", "Chocolate"]: False}
TypeError: unhashable type: 'list'
Remember – square brackets denote lists, round brackets denote tuple
s.
Dictionary Order#
Dictionaries will retain the order of the elements as they are defined (in Python versions >= 3.7).
my_dict = {"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
print(my_dict)
print(my_dict.values())
{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4}
dict_values([0, 1, 2, 3, 4])
rev_dict = {"4": 4, "3": 3, "2": 2, "1": 1, "0": 0}
print(rev_dict)
print(rev_dict.values())
{'4': 4, '3': 3, '2': 2, '1': 1, '0': 0}
dict_values([4, 3, 2, 1, 0])
Python does not consider the order of the elements relevant to equality:
my_dict == rev_dict
True
1.5.2 Sets#
A set is a list
which cannot contain the same element twice.
We make one by calling set()
on any sequence, e.g. a list or string.
name = "James Hetherington"
unique_letters = set(name)
unique_letters
{' ', 'H', 'J', 'a', 'e', 'g', 'h', 'i', 'm', 'n', 'o', 'r', 's', 't'}
Or by defining a literal like a dictionary, but without the colons:
primes_below_ten = {2, 3, 5, 7}
type(unique_letters)
set
type(primes_below_ten)
set
unique_letters
{' ', 'H', 'J', 'a', 'e', 'g', 'h', 'i', 'm', 'n', 'o', 'r', 's', 't'}
This will be easier to read if we turn the set of letters back into a string, with join
:
"".join(unique_letters)
'HaJonsme htgri'
A set has no particular order, but is really useful for checking or storing unique values.
Set operations work as in mathematics:
x = set("Hello")
y = set("Goodbye")
x & y # Intersection
{'e', 'o'}
x | y # Union
{'G', 'H', 'b', 'd', 'e', 'l', 'o', 'y'}
y - x # y intersection with complement of x: letters in Goodbye but not in Hello
{'G', 'b', 'd', 'y'}
Your programs will be faster and more readable if you use the appropriate container type for your data’s meaning. Always use a set for lists which can’t in principle contain the same data twice, always use a dictionary for anything which feels like a mapping from keys to values.